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Editorial

by Brent Yorgey 〈byorgey@cis.upenn.edu〉

You may have noticed this edition of The Monad.Reader is rather late. This is
because for the past eight months I have been the prisoner of giant, evil, imperative-
programming-obsessed naked mole rats. I have managed to stay connected to the
outside world by training earthworms to transmit IP packets, but as you may
imagine, this is rather slow. The earthworms have been working nonstop to bring
you this issue, which consists of three fun articles I hope you will enjoy: Doug
Auclair explains the ins and outs of difference lists, a functional list represen-
tation allowing fast concatenation and appending; Neil Brown presents his new
InterleaveT abstraction for flexible interleaving of streams of behavior; and Petr
Pudlák explains abstraction elimination – the process carried out by lambdabot’s
@pl command – in terms of the Reader monad.

By the way, if you happen to meet “me” in real life, beware! It is actually an
evil robotic replica.





List Leads Off with the Letter λ

by Douglas M. Auclair 〈dauclair@hotmail.com〉

The list data type provides a powerful way to operate with a collection of objects
using a very simple syntax. For the most part, this is enough, but for specialized
cases the structure of the list type makes processing slow or difficult. This article
examines the list data type through the functional lens, allowing us to look at lists
differently and increasing their expressivity and power without sacrificing their
syntactic simplicity.

I was revisiting the Project Euler [1] problems recently, and one of the problems
addressed lexicographic permutations.

Well, problem solved if you’re using C++ [2] or other languages that have
lexicographic_permutation packaged with their standard library set. Some lan-
guages do and some don’t, but that discussion is not à propos to this article, nor
even what lexicographic permutations are or how to go about generating them [3].

But something common enough did come up in the solving of that problem,
which is the issue of appending to the end of lists effectively.

Now, I have a prejudice: I love lists, and by that I mean to say that in more
than a few functional and logical programming languages, the List Data Structure
(uttered with reverence, and with not even (barely) a hint of mocking) provides a
facility for grouping and then operating on sets of objects that I find unparalleled
in other programming languages and paradigms. In Haskell, for example, I can
create a list simply by typing [0..9] or ["Mary", "Sue", "Bob"], and if I’m
feeling old-fashioned and gutsy, I can iterate through those lists inductively with
the code in Figure 1.

Or if I wish to embrace the modern era of programming (like, oh, since the
1970ish-es [4]), I can use map or fold to go anywhere I want to with a list. I mean,
come on! fold is, after all, the “program transformer function”. If I don’t like my
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> doSomething [] = []

> doSomething (h:t) = f h : doSomething t

Figure 1: Example of a (hand-constructed) function operating on a list

list as it is now (or if I don’t even like it being a list at all), I just fold over it
until it’s exactly how I want it to be.

For example, the above function is really just a specialization of map, isn’t it?
map could be implemented as in Figure 2:

> map _ [] = []

> map f (h:t) = f h : map f t

Figure 2: An implementation of the function map

So, doSomething is really just map f, as Figure 3 shows:

> doSomething = map f

Figure 3: doSomething as a specialization of the map function

One could take this into even more general territory, as map is a specialization of
fold, as shown by Figure 4. In fact, hold onto the composite function ((:) . f),
as you will see it come up again in relation to operating with functional lists.

> map f = foldr ((:) . f) []

Figure 4: map is a folding function

So, yes, lists rock my world: they are easy to construct and easy to operate on.
Now, you may say that in Programming Language X, lists are one of the standard

collection data types. This comes as no surprise. The need for lists is universal,
so each programming language has its own implementation. Where functional and
logic programming languages excel (like, for example, Lisp, Haskell and Prolog) is
the ease with which lists are created and destructured. I’ve also used Programming
Language X quite a bit myself, and I find list processing not a pleasure but a chore,
for to construct the self-same list of names in this example programming language,
I find myself required to do something like Figure 5. Destructuring requires a
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BidirectionalLinkedList<String> list

= new BidirectionalLinkedList<String>();

list.add("Mary");

list.add("Sue");

list.add("Bob");

Figure 5: List construction in Programming Language X

BidirectionalLinkedList<String> newlist

= new BidirectionalLinkedList<String>();

for(String elem : list) { newlist.add(doit(elem)); }

Figure 6: List processing in Programming Language X

similar level of effort (Figure 6).
And this implementation is only after the stunning advances of the STL, graft-

ing functionals onto the language with type parameterization. This first became
publicly available for C++ around 1994 [5] and was later adopted by other similar
languages when they expanded to include type parameterization.

Which is all well and good, but have you seen the work necessary to create the
correct types in the parameters? And heaven help you if you get the declaration
wrong!

Enough of that.
So lists are structures or collections, and structures can be viewed as objects,

and that is a very useful and powerful way to view them and to define them:

> data List t = [] | (t : List t)

Figure 7: List declaration and definition

No problem with that, and everything is right with the world.
. . . until it isn’t.
This definitely works, and works well, for lists in general, and it also works great

most of the time for working with the elements of the list. After all, in practice, we
are most concerned with the element we have worked on most recently, so, in most
cases, the element we just put in is the element we’d most likely to be retrieving
. . . AND (generally) our interest diminishes the further (in time) we are from an
element, and that translates directly into where elements are found in a list.

Generally.

7
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So, in general, lists work just fine; great, in fact.

There are specific cases where what we care about is not the most recent element,
but another ordering is important. Two cases spring immediately to mind: first,
queuing, and secondly (and commonly and specifically), document assembly.

In these two cases we wish to push onto the end of the list new elements, and
the above definition doesn’t give us access to the last element or position of the
list. And to get that access, we must reverse the list so the last element becomes
the first, or prepend to a reversed list. Either of these options has at least a linear
time cost when reverse is (eventually) called.

Otherwise, we must call (++) (the list concatenation function) or a function
like it to append elements to the end of the working list; this also has linear cost.
Either way, we pay the full price.

Now, there are objects that do give us immediate access to that last element and
position: deques and queues, for example. But when we go there, we give up the
ease of composition and decomposition that we have with lists. We pay a penalty
in expressivity with these types, or in performance when using lists against their
nature.

Or do we?

Well, one way of looking at lists is as objects, and above we gave a definition of
lists as objects, but this is not the only way to view lists. I propose another way
of looking at lists: lists can be viewed as functions [6] as we see in Figure 8.

> (:) :: t -> [t] -> [t]

Figure 8: Definition of the list constructor function

The above definition says that (:) (pronounced “cons”) takes an element and a
list and gives a list. This is a well-known function in the list-lexicon, so what’s the
magic here?

I propose we look at this function in an entirely different way, as in Figure 9:

> (:) :: t -> ([t] -> [t])

Figure 9: The list constructor viewed functionally

In this case, (:) constructs a list function from a seed element. This allows us
to use this function in a novel but perfectly acceptable way, as we see in Figure 10.

What we are saying here is that |> (pronounced “put to front”) is an operator
that takes an object x and puts that value on the front of list, just like (:) does.

8
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> x |> list = (x:) . list

Figure 10: The “put to front” operator

The difference here (heh: “difference”) (sorry, mathematician humor) is what
list is. For (:) used normally, list is of type [a] (or, directly and tautologically:
list is a list), but for |>, list is of type [a] -> [a]. Or, translating: list is a
function.

Do you see significance here? Earlier I asked you to hold onto the the function
that related fold to map which was ((:) . f). Now that we see list here is a
function, we see that this function of the map–fold relation is of the same form
for list-function construction in the points-free style. So, it looks like I’ve just
reinvented the (:)-wheel here, expressing that function in a different way. So
what’s the big deal?

Well, what I’ve actually done is to reinvent the wheel as a meta-wheel, and so
the big deal is as Figure 11:

> list <| x = list . (x:)

Figure 11: The “put to back” operator

What we have here with <| (pronounced “put to back”) is a function that adds
an element to the end of a list in – wait for it! – constant time. For “regular” lists
the best you can do is linear time, and so my work of constructing a document
by appending to the end of a list has just gone from an O(n2) to a linear-time
operation. Not a big deal for a small document, but we found that once a document
became more than a page or two, the operation went from “a blink of an eye”
to “keeping your eyes closed until the cows came home . . . that had been eaten
by wolves”. This is not the case with lists as functions: document construction
became a reasonable endeavor (that is, it occurred so quickly for us mere humans,
living in this non-nanosecond-time, we didn’t notice the elapsed time).

So, I’ve been a sly thing in one respect. I still haven’t told you what a (functional)
list is. I’ve defined the object view of lists, and I’ve declared what a functional
view of lists looks like, but haven’t defined them.

Here. Allow me to define them now in Figure 12.
There you go.
There are the “definitions”. I say “definitions” because with that sole definition,

everything works, for to ground a functional list, we simply pass it an empty list,
as Figure 13 shows.

9
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> empty = id

Figure 12: The “definitions” of functional lists (specifically: the empty list)

*Data.DiffList> empty []

[]

Figure 13: Converting a functional list to a “ground” list

Or even whatever list we are working with as Figure 14 shows:

*Data.DiffList> empty [1,2,3]

[1,2,3]

Figure 14: Appending a “ground” list to a functional list

Do you see what’s going on here? Because I missed it the first time myself: (++)
needs no definition for functional lists, for to append a ground list to a functional
list, all that is required is application. And to append a functional list, all that is
required is function composition [7].

So, when you append something to an empty list, you get that something back,
and empty works as the seed of the ’put to’ operators as Figure 15 shows.

It all works!

Summary

In this article we’ve demonstrated that there’s more than one way to look at lists.
The standard way is to view them is as objects, and in most cases, this works,
and works well: this view provides a syntax that makes list processing simple and
intuitive.

We’ve also shown that that is not the sole way to view things, and this view can
be constraining, particularly when lists are played against type as a queue or a
document assembler. In these cases it becomes simpler, declaratively, to view lists
as functions, and not only does that provide a syntax for simple list construction
either at the beginning or the end of the list, but it also provides constant-time
construction at either end. Furthermore, defining this view is as simple as viewing
the empty list as id and then using the partial function of (:) (“cons”). That’s
the generative view. Then, to extract the (“real” or “ground”) list from that view,

10
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*Data.DiffList> (5 |> 6 |> 2 |> empty) [1,2,4]

[5,6,2,1,2,4]

(empty <| 1 <| 2 <| 3) [4,5,6]

[1,2,3,4,5,6]

Figure 15: Concatenation with putting elements to the front and the back of
functional lists

it’s as simple as sending a list (for example, []) to that functional list to ground
the value for disposition.

In these special cases of working at the end of a list, which aren’t all that rare, the
functional view of list processing gives the programmer expressivity and efficiency,
eliminating the chore of appending to the end or reversing the target list. I quite
enjoy list processing this way: it gives me a fresh perspective on an old friend and
makes list processing in these cases easy and fun.

About the Author
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The InterleaveT Abstraction:
Alternative with Flexible Ordering

by Neil Brown 〈neil@twistedsquare.com〉

The Alternative type class in Haskell supports the notion of choice between items
such as parser actions or channel communications. If, instead of making a one-
off choice between items, you need to choose several in an unknown order (e.g.
parsing different sections in a file which can be in arbitrary order), the resulting
code spelling out all the orderings can become quite intricate. This article explains
InterleaveT , a simple combinator abstraction on top of Alternative and Monad
which captures the flexibly-ordered interleaving of several streams of behaviour at
a high level, without resorting to writing in a state machine-like style.

Introduction

Programs sometimes need to engage in different behaviours in an unknown order.
For example, parsing "top left" or "left top" without worrying about the order
of the two words, or communicating with thread A and thread B, without minding
who comes first. This is almost invariably programmed by waiting for a choice of
the events, and based on which happens first, deciding what will be done next.
For example, if the parser starts by accepting "top" or "left", and finds "top", it
will then only look for "left".

When the choices become more complicated, for example, accepting one of
"front" or "back" with one of "top" or "bottom" and one of "left" or "right",
spelling out all the options is verbose, combinatorially large, and often features
duplication. All of these make the code harder to maintain.

This article introduces the InterleaveT abstraction, which uses a combinator-
based approach to deal with different orderings (with a slightly more flexible ap-
proach than previous solutions in parsing). Parsing is a well-known example, but
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the approach has utility in any setting that uses choice: we will see examples
featuring channel communications, software transactions and card games.

The combinators introduced in this article are solely based on the existing Monad
and Alternative type classes; anything that is an instance of both can use the
combinators straight away. We start with a recap of these type classes, then explore
the combinator API, examples of their use, and finally the implementation. The
code is available on Hackage as the interleave library [1].

Type Class Recap

This article will make use of several existing type classes in the base library which
can have instances for some type constructor f with kind ∗ -> ∗, such as Maybe,
[] and IO. To briefly recap:

I Functor: Gives you fmap :: (a -> b) -> f a -> f b, also written infix as <$>,
which allows you to apply a pure function to a wrapped value.

I Applicative : Gives you pure :: a -> f a, which allows you to wrap a value,
and the (<∗>) :: f (a -> b) -> f a -> f b operator, which (together with
pure) allows you to apply a function to several wrapped values.

I Monad: Gives you the (>>=) :: f a -> (a -> f b) -> f b operator and do-
notation.

I Alternative : Supports a choice operator (<|>) :: f a -> f a -> f a and a
never-available choice, empty :: f a.

These classes effectively form a hierarchy:

Functor

Applicative

Alternative Monad

Figure 1: The effective hierarchy of type classes. For historical reasons, Monad
does not actually depend on Applicative, but every Monad can be made an Applica-
tive.

The Monad and Alternative classes are orthogonal: types that have an instance
for Applicative may be instances of just one of Monad and Alternative , of both, or
of neither. This article is concerned with types that are instances of both.
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A Starting Example

As a motivating challenge, think about writing a regular expression that accepts a
string with an unlimited number of ’a’s, at most 6 ’b’s and ends on the second
’c’. (This is, in effect, the interleaving of three different behaviours.) With classic
regular expressions you may end up in a horrible mess like this:

a*(c|ca*b|ca*ba*b|...|ba*ca*b|ba*ba*c|...)a*c

Regular expressions aren’t well suited to this challenge, admittedly (now you
have two problems, right? [2]). Consider the challenge in Parsec [3] instead; a
typical solution counts the number of ’b’s and ’c’s found:

abcCount = abcCount’ (0, 0)
where

abcCount’ counts@(bCount, cCount)
| cCount == 2 = return ()

| bCount == 6 = ( (char ’a’ >> return counts)
<|> (char ’c’ >> return (bCount, cCount + 1)

) >>= abcCount’
| otherwise = ( (char ’a’ >> return counts)

<|> (char ’b’ >> return (bCount + 1, cCount))
<|> (char ’c’ >> return (bCount, cCount + 1)

) >>= abcCount’

The other approach, which this article covers, is to move to a higher level of
abstraction that allows the problem to be specified in an obvious way by using
combinators on top of Parsec:

engageMany
[ unlimited (char ’a’)
,upTo 6 (char ’b’)
,endAfter (upTo 2 (char ’c’))]

The next section explains the API that features the above combinators.

API

We will define an API for combinators that sit on top of an existing Monad and
Alternative type, typically labelled f, and allow easy specification of interleaved
behaviours. This section defines the API and behaviour of the types and functions;
we will return to the implementation later on. We will start by defining a new
wrapper/transformer type for supporting our combinators:

15
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data InterleaveT f a = ...

instance Functor f => Functor ( InterleaveT f) where ...

instance Alternative f => Applicative ( InterleaveT f) where ...

The f parameter is the Monad/ Alternative that we are wrapping, and the a
parameter is the return type. Note that InterleaveT is an instance of Functor and
Applicative but not Monad or Alternative . At the outer-most point we run such
an item with the engage function:

engage :: Monad f => InterleaveT f a -> f a

Unlimited Repetition

The unlimited combinator allows an action to be performed an unlimited number
of times:

unlimited :: Functor f => f a -> InterleaveT f [a]
unlimited :: Functor f => f a -> InterleaveT f ()

If we use engage to run the unlimited combinator, we will perform the given
action repeatedly without ever terminating. This gives rise to an obvious law:

engage ( unlimited x) == forever x

Limited Repetition

There are many functions that are all variants on the same theme: performing
particular actions a limited number of times:

once :: Functor f => f a -> InterleaveT f (Maybe a)
upTo :: Functor f => Int -> f a -> InterleaveT f [a]
inOrder :: Functor f => [ f a] -> InterleaveT f [a]

Note that all these functions indicate an upper limit on the amount of times the
action may be executed, but not a lower limit. It is possible, via combinators for
terminating the engage call early, that the actions may not take place at all (hence
the Maybe return type of once). These combinators have various laws:

engage (once x) == Just <$> x
once == fmap listToMaybe . upTo 1
upTo n == inOrder . replicate n
engage (inOrder xs) == sequence xs

16
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Note that when there are no actions left in a limited repetition, engage termi-
nates. If you have an unlimited repetition, you never run out of actions and the
call to engage will not terminate.

It is important to note the difference between once (sequence xs) and inOrder xs.
The former offers sequence xs as a single choice to the Alternative instance, and if
chosen will execute all of xs before the next item in the interleaving. In contrast,
inOrder xs will begin by offering just the first item in the list xs to the Alternative
instance. If this is chosen, then next time it will offer the second item in xs and so
on. So once (sequence xs) will not interleave xs with anything else, but inOrder xs
will interleave the list with all the other items being offered.

Interleaving

So far, so simple. This is not yet interleaving – just a single stream of actions.
The combinator that really unlocks the power of the approach is alongside , which
allows composition of two streams of behaviour:

alongside :: Alternative f =>

InterleaveT f a -> InterleaveT f b -> InterleaveT f (a, b)
alongside :: Alternative f =>

InterleaveT f a -> InterleaveT f b -> InterleaveT f ()

alongsideMerge :: ( Alternative f , Monoid a) =>

InterleaveT f a -> InterleaveT f a -> InterleaveT f a

This combinator is the one that actually interleaves different behaviours. It is
worth noting that these alongside functions inherit the bias of the <|> operator.
Most instances of Alternative use left-bias, so alongside is usually left-biased. Each
individual action from either side of the alongside combinator may execute next,
and afterwards the appropriate choices are offered again. Our next law indicates
some of its behaviour:

engage ( unlimited x ‘alongside ‘ unlimited y) == forever (x <|> y)

The laws for anything more complicated are too long to express – which is the
whole motivation behind using the combinator approach! For example, consider
the code:

engage (once x ‘alongside ‘ unlimited y)

This offers x <|> y repeatedly, but once x happens, it only performs y forever
after. We will look at more examples of the combinator later on.

We can also combine alongside with engage to offer a more convenient function:

engageMany :: Alternative f => [ InterleaveT f a] -> f [a]

17
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This combinator takes a list of actions, runs them all alongside each other and
returns the results in a list with corresponding order. Note that any alongside or
engageMany call with an unlimited repetition in it will never run out of actions,
and thus will never terminate without additional terminator combinators.

Termination

Termination can be explicitly instigated by wrapping a particular action with the
endAfter combinator:

endAfter :: Functor f => InterleaveT f a -> InterleaveT f a

Whenever the given item has no more actions to perform, the entire combinator
system that has been passed to the outer engage function will terminate. Since
unlimited always has more actions to perform, wrapping an unlimited behaviour
with endAfter has no effect. This all gives rise to our next laws:

endAfter ( unlimited x) == unlimited x
engage (endAfter (once x)) == Just <$> x
engage (endAfter (once x) ‘alongside ‘ endAfter (once y)) == Just <$> (x <|> y)
engage (endAfter (once x) ‘alongside ‘ unlimited y) ==

let m = (y >> return True <|> x >> return False) >>= \b -> when b m) in m

The combinators are becoming more powerful – which is indicated by the right-
hand side of our laws becoming longer than the left! The latter example can be
used to, for example, parse a sequence of unlimited ‘a’s ended by a ‘b’:

engage ( unlimited (char ’a’) ‘alongside ‘ endAfter (once (char ’b’)))

If you instead want to terminate when a particular state is reached, you can use
the endWhen function:

endWhen :: Functor f => (a -> Bool) -> InterleaveT f a -> InterleaveT f a

This acts like the given event but when the current return value satisfies the
given function, the whole interleaving terminates. For example, you may want to
accept up to six ‘a’s, unlimited ‘b’s, and terminate when there are more ‘b’s than
‘a’s:

engage $ endWhen (\(as,bs) -> length bs > length as)
(upTo 6 ’a’ ‘alongside‘ unlimited (char ’b’))

State

A further combinator generalises unlimited to allow explicit state passing:

18
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unlimitedRecurse :: Functor f => (a -> f (b, a)) -> a -> InterleaveT f [b]
unlimitedRecurse :: Functor f => (a -> f a) -> a -> InterleaveT f ()

The first allows output (besides the state) to be generated for the result. It is
easy to use these to support a state monad transformer. For example, using StateT
from the transformers library:

embedStateT :: StateT s f a -> s -> InterleaveT f [a]
embedStateT m x = unlimitedRecurse (runStateT m) x

embedStateT :: StateT s f a -> s -> InterleaveT f ()

embedStateT m x = unlimitedRecurse (runStateT m) x

This makes programing behaviours with state simpler, and allows the use of a
more familiar API (the state-transformer monad). For example, you may want
a parser that checks properties of pseudo-randomised sequences (e.g. trials in a
psychology experiment) where you do not permit more than three identical letters
in a row:

checkSeq :: StateT (Char, Int ) ParseM ()

checkSeq = do (c, n) <- get
c’ <- if n < 3

then letter ’A’ <|> letter ’B’
else if c == ’A’ then letter ’B’ else letter ’A’

put $ if c == c’ then (c, n + 1) else (c’, 1)

checkSeqIT :: InterleaveT ParseM ()

checkSeqIT = embedStateT checkSeq (undefined, 0)

Note that the checkSeq parser is written solely using a ParseM monad and the
StateT monad, without knowledge of the InterleaveT abstraction, but checkSeqIT
wraps it simply into an InterleaveT item that can be interleaved with other actions.

Examples

The previous section showed the API of our combinators. In the following subsec-
tions we will look at a few examples of using the combinators.

Communicating Haskell Processes

Communicating Haskell Processes (CHP) is a library for message-passing [4]. The
Alternative instance can be used to choose between reads and writes on different
channels, as well as synchronisations on barriers.
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CHP can be used to write simulations, often following a “tick” pattern; the
simulation is separated into discrete time-frames by a global tick event that all
agents in the simulation synchronise on together. Between the tick events, the
agents carry out all the actions that they wish/can. This is usually managed by
having each agent offering all the actions that they could perform, alongside the
lower-priority tick event. If two agents both offer to either perform event a or
perform the tick event, the higher priority of the a event (or rather, the lower
priority of the tick event) ensures that they will perform a. The agents will then
subsequently offer the tick event.

In code, this simple case might look like this, without InterleaveT :

((True <$ syncBarrier a) <|> (False <$ syncBarrier tick ))
>>= flip when (syncBarrier tick )

(This definition uses a handy little function from the Data.Functor module:

(<$) :: Functor f => a -> f b -> f a
(<$) x f = fmap (const x) f

If you ever find yourself writing m >> return x for a short monadic function, you
can instead write x <$ m.)

With InterleaveT we have instead:

engageMany [once (syncBarrier a), endAfter (once ( syncBarrier tick ))]

The benefit increases when you need to add a third or fourth action. For ex-
ample, in a particular blood clotting simulation [5], sites are connected to their
neighbours via communication channels (over which platelets can be communi-
cated, to move down the pipeline). The values communicated over the channels
are Maybe Platelet; a Nothing value is sent when a site is empty during a time-step.
Therefore, during a time-step an empty site must offer to read in platelets from
the site behind it, and send the empty signal to the site ahead of it. This can be
coded as:

fst <$> engage (once (readChannel prev)
‘alongside‘ once (writeChannel next Nothing)
‘alongside‘ endAfter (once ( syncBarrier tick )))

Due to the right-associativity of alongside , you can use fst to pull off the return
value of the left-most item: the value read from the prev channel above.

Parser

We saw earlier that parsing is one application of the InterleaveT abstraction. The
InterleaveT pattern allows expression of multiple strands of parsing. For example,
you may want to parse a file that has an optional definitions section, a mandatory
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main section, and as many comment sections as you want. This could be expressed
as:

engage $ once definitions ‘alongside‘ unlimited comment
‘alongside‘ endAfter (inOrder [main, eof ])

Similarly, you may want to parse a location such as “top” or “bottom left” or
“right top” (i.e. any of eight locations, with the words in any order):

engage $ once (word "top" <|> word "bottom")
‘alongside‘ once (word "left" <|> word "right")

One important point to note about parsers is that for efficiency reasons, most
major Haskell parsing libraries (e.g. Parsec [3], attoparsec [6]) provide an instance
for Alternative that only switches to try the right-hand side if the left-hand side
fails without consuming any input. Therefore examples like those above may
require additions like a try combinator; this is not an issue added by the interleave
combinators, but rather a consideration which was already present in using the
parsing libraries.

Drawing Cards

The DrawM monad from the game-probability library [7] supports randomly
drawing cards from a deck [8]. In fact, it supports not only actually drawing
cards, but also calculating the probabilities of various outcomes. In addition to
Monad, it is an instance of Alternative : if one draw cannot be satisfied by the next
card, the alternative is tried instead.

Let’s take an example from the card game Dominion [9]. There is an adventurer
card which allows you to keep drawing cards until you have drawn two treasure
cards. This is easy to express using our combinators:

engage $ unlimited (drawWhere (not . isTreasure))
‘alongsideMerge‘ endAfter (upTo 2 (drawWhere isTreasure))

This function gives back a list of the cards drawn. This code can be used
either to draw cards (for example, in a computerised version of the card game) or
to calculate the chances of getting different numbers of cards given a particular
starting deck.

Software Transactional Memory

Software Transactional Memory (STM) allows multiple transactional variables to
be manipulated as part of a single atomic transaction. Using STM, it is possible to
construct buffered communication channels for communicating between different
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threads. However, this is subtly but crucially different from the CHP example
above. An STM transaction fetches data from channels in one transaction. The
data is either already there or it is not; the transaction will process it all at once,
atomically. This is in contrast to CHP, which performs one communication at a
time, and cannot roll back previously performed communications afterwards.

Note: At the time of writing, STM has no Applicative or Alternative instances.
It is trivial to define these in your own code for now:

instance Applicative STM where
pure = return
(<∗>) = ap

instance Alternative STM where
empty = retry
(<|>) = orElse

The STM library has a TChan abstraction, which represents a buffered channel.
The readTChan ::TChan a ->STM a function reads from such a channel, failing if
the channel is currently empty. We can use our combinators to wrap calls to this
function. Let’s imagine that you want a transaction where you read everything
possible from channel req, one item from channel control (if present), and only
succeed if you can also read from channel update. That can be coded as:

engage $ unlimited (readTChan req)
‘alongside‘ once (readTChan control)
‘alongside‘ endAfter (once (readTChan update))

Note that this code makes crucial use of the left-bias that the alongside operator
has inherited from STM’s <|> implementation (orElse). The combinators will first
drain the req channel, and only when a read from that fails (due to it being empty)
will control be tried, and after that (successful or not), update will be read from.
Note that if the read from update fails, the semantics of STM mean that the entire
transaction will retry, meaning that it will sleep until at least one of the channels
are written to, at which point it will try the whole thing again from scratch.
From the point of view of the process, the transaction simply does not complete
until the interleaved behaviour has terminated (by successfully reading from the
update channel). This is again a case of InterleaveT inheriting the semantics of
its underlying monad. Similar code in the CHP monad will not cancel the earlier
reads, and will simply wait for the next communication to take place.

Error Transformers

The InterleaveT abstraction also works well with error monads (or error monad
transformers), also known as exception monads. There are many different error
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monad transformers; for the purposes of illustration, we will define a typical ex-
ample:

newtype ExT e m a = ExT { runExT :: m (Either e a)}

instance Monad m => Monad (ExT e m) where
return = ExT . return . Right
(>>=) m k = ExT $ runExT m >>= either (return . Left) (runExT . k)

abort :: Monad m => e -> ExT e m a
abort = ExT . return . Left

liftEx :: Functor m => m a -> ExT e m a
liftEx = ExT . fmap Right

The Functor, Monad and Applicative instances are trivial, but to be clear we
give the Alternative instance below:

instance Alternative f => Alternative (ExT e f) where
empty = ExT empty
(<|>) a b = ExT (runExT a <|> runExT b)

This transformer can be used, for example, with the STM monad. You can
define a helper function to run it at the top level:

atomicallyEx :: ExT e STM a -> IO (Either e a)
atomicallyEx = atomically . runExT

Now imagine that in the middle of an InterleaveT item in a transaction, you may
want to terminate the entire transaction. STM itself offers no such facilities ( retry
does as its name suggests and will wait to retry, not abort), but by using ExT
on top of STM we can terminate the transaction by returning an error/exception
value.

The way that InterleaveT and ExT are implemented means that if an exception
occurs in an action, the entire engage call terminates with the exception immedi-
ately. For example, you may have an application which reads Maybe values from a
channel, but if it reads a Nothing value, that is a signal that the transaction should
end. Adapting our earlier example, we can watch for Nothing values on the req
channel and abort if one is found:

atomicallyEx $ engage $

unlimited (readChanMaybe req)
‘alongside‘ once ( liftEx $ readTChan control)
‘alongside‘ endAfter (once ( liftEx $ readTChan update))
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readChanMaybe :: TChan (Maybe a) -> ExT () STM a
readChanMaybe c = do x <- readTChan c

case x of
Nothing -> abort ()

Just x -> return x

This will attempt to read unlimited values from the req channel, at most one
value from the control channel and end if it can then read from the update chan-
nel. If the update channel cannot be read from, the transaction will retry. If the
transaction discovers a Nothing value on the req channel, either the first time or
during any retry, it will abort the transaction regardless of the state of the update
channel.

State Transformers

The InterleaveT abstraction can become more powerful (and more intricate) if com-
bined with state monad transformers, such as the one found in the transformers

library. For example, imagine we have a CHP system where we are willing to send
out our status, and to accept new status values – but only, say, 3 updates per
frame:

proc :: Chanin Status -> Chanout Status -> Status -> CHP Status
proc input output
= fmap snd . runStateT (engage $ unlimited send ‘alongside ‘ upTo 3 recv)
where

send :: StateT Status CHP ()

send = lift (get >>= writeChannel output)

recv :: StateT Status CHP ()

recv :: lift (readChannel input >>= put)

The two separate actions can be programmed separately, but interact via the
state. The usefulness here stems from being able to easily alter (in the third line)
how often each action can occur without altering the behaviour of the individual
action, or its partner. That is, we could easily accept unlimited updates (or restrict
the number of sends) without altering the code for send or recv.

Applicability and Testing

The InterleaveT abstraction is not useful for all types that have an Alternative
instance. If the actions in the monad are deterministic (i.e. always have the same
result), the combinators become trivial. For example, consider this code in the
Maybe monad:
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engage ( unlimited x ‘alongside‘ endAfter (once y))

Both x and y are of type Maybe a. If x is Nothing, then this call is equivalent to
y; if x is Just then the code will never terminate. So the combinators do not make
sense here; they only make sense if the outcome of the events and choices between
them can vary each time they are executed.

There is one exception to this, and that is for testing the InterleaveT abstraction.
For this purpose we can use a writer-transformer monad on top of the list monad
to get a list of possible options a behaviour would take. Our basic definitions are
(using WriterT from the transformers library):

type M = WriterT String []

run :: M a -> [String ]
run = execWriterT

action :: Char -> M ()

action c = tell [c]

a, b, c, d :: M ()

a = action ’a’
b = action ’b’
c = action ’c’
d = action ’d’

Then with the help of a function that checks for equality on sorted lists, we can
write a test:

assertEqualS :: (Ord a, Show a) => String -> [a] -> [a] -> Assertion
assertEqualS msg = assertEqual msg ‘on‘ sort

assertEqualS "inOrder"

["abcd" , "acbd" , "acdb" , "cdab" , "cadb" , "cabd"]
(run $ engage $ inOrder [a, b] ‘alongsideMerge‘ inOrder [c, d])

This checks that running the given InterleaveT produces all six possible results
we would expect. What this code is doing, in effect, is treating the InterleaveT
abstraction as a grammar and then generating all possible strings – the dual of
parsing, to which we have already seen InterleaveT applied. The only problem
with this technique is that it cannot be used to support unlimited actions, as they
will produce an infinite string (which cannot be properly checked for equality).
Techniques such as observable sharing [10] could perhaps be used to circumvent
this problem.
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Implementation

In this section we will look at the implementation of the InterleaveT type and the
associated combinators. The InterleaveT type is as follows:

data InterleaveT f a = Terminate { result :: a }
| NoMore { result :: a }
| Continue { result :: a, rest :: f ( InterleaveT f a) }

The Terminate constructor indicates that the current interleaving should termi-
nate with the given result regardless of what other choices are available. As we
will see, this constructor is “viral”; it overrides Continue in all cases, so that if
any combinator wants to terminate, then it will do so, no matter how deeply it
is nested. In contrast, the NoMore constructor indicates that there are no further
actions that could be executed in this branch, but if actions are available in other
branches then the behaviour continues. The alternative to these is the Continue
constructor, which has the result that would currently be returned if we stop now
(due to a Terminate somewhere), and the choice to offer if we are instead continu-
ing. Once executed, this rest choice will return the next set of choices to engage
in.

The top-level engage function is very simple:

engage :: Monad f => InterleaveT f a -> f a
engage (Terminate x) = return x
engage (NoMore x) = return x
engage (Continue m) = m >>= engage

The work is all done by the combinators (and facilitated by the chosen repre-
sentation); engage is a very hollow function.

The unlimited function is as follows:

unlimited :: Functor f => f a -> InterleaveT f ()

unlimited m = Continue () (unlimited m <$ m)

What the far-right-hand expression does is to execute the action m and then give
back the result unlimited m as the next action to try to execute, and therefore
unlimited always does exactly the same thing on each iteration of the interleaving.
In figure 2, we take these definitions of engage and unlimited to derive one of our
earlier laws.

The alongside combinator uses the Alternative instance of the wrapped type:

alongside :: Alternative f =>

InterleaveT f a -> InterleaveT f b -> InterleaveT f (a, b)
alongside oa@(Continue a fa) ob@(Continue b fb)
= Continue (a, b) (( flip alongside ob <$> fa) <|> ( alongside oa <$> fb))
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alongside (NoMore a) ob = (,) a <$> ob
alongside oa (NoMore b) = flip (,) b <$> oa
alongside oa ob = Terminate ( result oa, result ob)

The result if we finish now is simply the pair of the results of the two sides. If
both want to continue (the first case), we choose between the left-hand action (fa)
– in which case we will pair it with the untouched right-hand side (ob) – and the
right-hand action (fb), in which case we will pair it with the untouched left-hand
side (oa). If either has no more actions, the result is simply added to the other
side accordingly. If either or both wants to terminate (the last case), we propagate
this accordingly. We use this definition to derive an earlier law in figure 3.

The endAfter function terminates when there are no more actions left to run;
this translates to simply transforming the NoMore constructor into the Terminate
constructor:

endAfter :: Functor f => InterleaveT f a -> InterleaveT f a
endAfter (NoMore x) = Terminate x
endAfter (Terminate x) = Terminate x
endAfter (Continue x m) = Continue x (endAfter <$> m)

The endWhen function generalises this to turn things into a Terminate construc-
tor only when the given condition is satisfied:

endWhen :: Functor f => (a -> Bool) -> InterleaveT f a -> InterleaveT f a
endWhen (Terminate x) = Terminate x
endWhen f (NoMore x) = if f x then Terminate x else NoMore x
endWhen f (Continue x m)
= if f x then Terminate x else Continue x (endWhen f <$> m)

The inOrder function is as follows:

inOrder :: Functor f => [ f a] -> InterleaveT f [a]
inOrder [] = NoMore []
inOrder (m:ms) = Continue [] ((\x -> (x:) <$> inOrder ms) <$> m)

When the list of actions is empty, it returns NoMore with an empty list. Until
then it Continues processing the list, and each result is added to the list of later
results that results from future calls.

Instances

The Functor instance for InterleaveT defines fmap as a simple recursive function:

instance Functor f => Functor ( InterleaveT f) where
fmap f (Terminate x) = Terminate (f x)
fmap f (NoMore x) = NoMore (f x)
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fmap f (Continue x m) = Continue (f x) (fmap f <$> m)

The Applicative instance uses the NoMore constructor for the implementation
of pure; for the <∗> operator it uses the alongside combinator to run the two parts
alongside each other, and then merges them by applying the function (left-hand
side) to the argument (right-hand side):

instance Alternative f => Applicative ( InterleaveT f) where
pure = NoMore
(<∗>) a b = uncurry ($) <$> (a ‘alongside‘ b)

The Applicative instance is useful in explaining why there is no Monad instance
for InterleaveT . In the case of the <∗> operator, it is possible for either the left-
hand side or right-hand side to actually execute first (or repeatedly). The results
are then merged afterwards. The Monad instance would require the right-hand
side to know the return value of the left-hand side before it could execute, which
obviously is not possible if the right-hand side can execute first.

The Applicative instance can also be used to provide an implementation of the
engageMany function that illustrates the behaviour of the instance. Recall that
the engageMany function runs many behaviours alongside each other; it is defined
as follows:

engageMany :: Alternative f => [ InterleaveT f a] -> f [a]
engageMany = engage . sequenceA

Note that sequenceA does not actually denote sequencing of the events them-
selves. Rather, it acts as a short-hand for something like foldr1 alongsideMerge,
i.e. taking a list of actions and indicating that they should all be run alongside
each other, but with the values returned in the same sequence as the actions were
passed. To help the reader’s intuition, it is perhaps helpful to look at the instance
above with this definition of sequenceA for lists:

sequenceA :: Applicative f => [ f a] -> f [a]
sequenceA (x:xs) = (:) <$> x <∗> sequenceA xs
sequenceA [] = pure []

This effectively translates, for InterleaveT , to:

sequenceA :: Alternative f => [ InterleaveT f a] -> InterleaveT f [a]
sequenceA (x:xs) = uncurry (:) <$> alongside x (sequenceA xs)
sequenceA [] = NoMore []

That is, all the events in the list are run alongside each other, and then merged
back into a list once they have finished, as explained earlier for the Applicative
instance.
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Related Work: Parsing Permutations

The CHP example described earlier in the article was the motivation for the original
combinators – they were known as behaviours and were explained (along with some
notes on grammars) in a blog post [11]. They were originally specific to CHP but it
was subsequently realised that they would work for anything that supported both
Monad and Alternative – which eventually led to this article, and the discovery of
some similar work in parsing: the“Parsing Permutation Phrases” (PPP) functional
pearl [12].

The PPP work, on which the Parsec.Perm module is based, has a very sim-
ilar aim to the combinators described in this article, albeit targeted specifically
at parsing. More recently, the idea behind the PPP work has been generalised
and packaged as a library using the general Applicative class (and therefore not
restricted to parsing), called action-permutations [13].

There are three main differences to the user between the work described in this
article and the action-permutations library. The first difference is an API design
choice: action-permutations has no combinator like endAfter. The permutation
in action-permutations only terminates once all non-optional actions have com-
pleted (and all optional actions have been tried). This has the disadvantage of not
being able to terminate the stream of actions early, but has the advantage that
it can be guaranteed that certain actions will take place. Specifically, a primary
combinator in action-permutations is:

atom :: Alternative p => p a -> Perms p a

The InterleaveT library presented in this article does not have that specific
function; our similar once function has a type with a Maybe return:

once :: Alternative f => f a -> InterleaveT f (Maybe a)

This difference – having the Maybe wrapper – is because the possibility of early
termination means that we cannot guarantee that the action wrapped by once will
ever execute before the interleaved behaviour finishes.

The second difference is also an API design choice: action-permutations

has no combinator like inOrder, which allows limited ordering among the other-
wise “anything goes” ordering of InterleaveT and action-permutations. As with
endAfter, there is no technical reason why such a combinator could not be added.

The third, and most significant, difference between action-permutations and
InterleaveT is that InterleaveT uses Monad where action-permutations uses
Applicative (in fact, the Applicative work was partly inspired by the original
PPP work [14]). Many of the basic combinators in this article, such as unlimited ,
alongside , inOrder and endAfter, can be implemented in either setting. However,
the endWhen, unlimitedRecurse and unlimitedRecurse combinators cannot be sup-
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ported without Monad, and neither can the approaches seen earlier using error
monad transformers with InterleaveT .

The use of Monad restricts what types can be used with the library (strictly
fewer types are instances of Monad than Applicative ), but allows more power-
ful combinators to be implemented. The use of Monad also makes the code for
InterleaveT simpler, and does not require the use of rank-N types or GADTs as
an Applicative -based implementation does.

Summary

This article explained the InterleaveT abstraction for repeated choices between
actions. We have seen the API, implementation and various examples in which
the abstraction has been found to apply. This code has been packaged and appears
on Hackage as the interleave package [1].

We end with one final example of using InterleaveT : parsing anagrams. To parse
a (case-insensitive) anagram of a word, we can use this parser:

anagram :: String -> Parsec String () ()

anagram s = engage $ sequenceA $ endAfter (once eof) : map charAnyCase s
where
charAnyCase :: Char -> InterleaveT (Parsec String ()) ()

charAnyCase c = once ( satisfy (((==) ‘on‘ toLower) c) <?> show [toLower c])

We can then test this function as follows:

> runP (anagram "Alternative") () "" "InterleaveT"

Left ( line 1, column 10):
unexpected ’e’
expecting end of input , "a" or "t"

The parsing fails on the second to last letter of InterleaveT because Alternative
has one fewer ‘e’. Hmmmm – in the finest tradition of coding, we can fix that with
a quick ugly hack:

> runP (anagram "Alternative") () "" "IntarleaveT"

Right ()

There you go. We’ve shown that InterleaveT really is Alternative with a flexible
ordering (but also an extra ‘e’ instead of an ‘a’, because life is never quite as neat
as you’d like it to be).
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engage ( unlimited m)
= {apply unlimited }

engage (Continue () ( unlimited m <$ m))
= {apply engage}

( unlimited m <$ m) >>= engage
= {using: x <$ m = m >> return x}

(m >> return ( unlimited m)) >>= engage
= {monad laws}

m >> engage (unlimited m)
= {coinduction}

m >> forever m
= {definition of forever}

forever m

Figure 2: Equational reasoning to prove the law: engage . unlimited = forever



engage ( unlimited x ‘alongside‘ unlimited y)
= {apply unlimited in two places}

engage (Continue ()

( unlimited x <$ x) ‘alongside‘ Continue () ( unlimited y <$ y))
= {apply alongside}

engage (Continue ((), ())
(( flip alongside ( unlimited y) <$> (unlimited x <$ x))
<|> ( alongside ( unlimited x) <$> (unlimited y <$ y))))

= {using: f <$> (x <$ m) = f x <$ m twice}
engage (Continue ((), ())

(( alongside ( unlimited x) ( unlimited y) <$ x)
<|> ( alongside ( unlimited x) ( unlimited y) <$ y)))

= {using: (x <$ m) <|> (x <$ n) = x <$ (m <|> n)}
engage (Continue ((), ())

(( alongside ( unlimited x) ( unlimited y)) <$ (x <|> y)))
= {apply engage}

(( alongside ( unlimited x) ( unlimited y)) <$ (x <|> y)) >>= engage
= {using: x <$ m = m >> return x}

(x <|> y) >> return ( alongside ( unlimited x) ( unlimited y)) >>= engage
= {monad laws}

(x <|> y) >> engage (alongside ( unlimited x) ( unlimited y))
= {coinduction}

(x <|> y) >> forever (x <|> y)
= {definition of forever}

forever (x <|> y)

Figure 3: Equational reasoning to prove a law





The Reader Monad and Abstraction
Elimination

by Petr Pudlák 〈petr.mvd at gmail dot com〉

When I first saw the types of the return and >>= functions of the reader monad, a
remarkable similarity between them and the types of the well known combinators K
and S caught my attention. It took me a while to realize that (and why) this is
not a coincidence. In this article I would like to share my thoughts and show how
the reader monad relates to these combinators and to the abstraction elimination
process. I will describe the standard process of abstraction elimination, but in the
context of the reader monad. I will also show how various well known combinators
correspond to standard Haskell functions.

Introduction

In the early 1920s, Moses Ilyich Schönfinkel aimed at creating a logic system with-
out bound variables. To do this, he invented a set of special operators (which we
now call combinators) which allowed him to construct such a system. Some of
these operators correspond to the combinators now known as I, K and S, which
we will discuss later. His ideas were later rediscovered and developed by Haskell
Curry, and gave rise to a whole field of logic called combinatory logic. See History
of Lambda-calculus and Combinatory Logic [1] for details.

Combinatory logic is closely related to the lambda calculus, which was invented
by Alonzo Church and his students in the 1930s. As it turned out, a lambda
calculus term can be converted into an equivalent combinatory logic term through
a process called abstraction elimination. And since any combinatory logic term
can be converted into a lambda calculus term, the whole process can be carried
out within the lambda calculus: first the required combinators are expressed as
lambda terms, and then any lambda term can be converted into a term that does
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not use lambda abstractions except for the encoded combinators. This will be one
of the main topics of this article.

Abstraction elimination is not only a theoretical mathematical concept. For
example, when implementing a reduction machine for a functional language it
is much easier to first perform abstraction elimination and then to work with
combinators instead of lambda abstractions and variables. (See Chapter 16 in
Peyton Jones’s book [2].)

Also, coding functional programs without variables is in many cases very natural
and improves readability. Instead of thinking about how functions apply to data
one thinks about how functions compose together. For example, instead of writing

f x = g (h (i (j x )))

one writes

f = g ◦ h ◦ i ◦ j

This coding style, called point-free style (also pointless style), is generally consid-
ered much cleaner and good practise. (See the Pointfree page on the Haskell wiki
[3].)

Converting Haskell expressions into point-free expressions has been incorporated
by Thomas Jäger into the famous Lambdabot program as the @pl plugin. The
plugin indeed uses the reader monad in the process. Quoting the Pointfree Haskell
wiki page [3]:

The @pl (point-less) plugin is rather infamous for using the (→) monad
to obtain concise code.

Hopefully this article will help the reader understand (among other things) how
Lambdabot actually uses the reader monad for this purpose.

Preliminaries

I will assume that the reader is acquainted with the Haskell language and in par-
ticular with monads, and with the very basics of the lambda calculus. There are
many monad tutorials available on the Internet. For introduction to the lambda
calculus I recommend Barendregt’s monographs ([4, 5]).

As this article is intended for Haskell programmers, I will express lambda calcu-
lus terms using a subset of the Haskell language restricted to the basic syntax of
the lambda calculus: lambda abstraction, variables, constants, function applica-
tion and parentheses. We will use Haskell’s standard type system to assign types
to these terms.
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Combinators and combinatory logic

The main idea of combinatory logic is to present a formal logic system without the
need for variables. It is similar to the lambda calculus, but lambda abstractions
are replaced by a fixed set of primitive (higher-order) functions, called combina-
tors. By choosing a suitable set of combinators one can get a system that has
the same expressive power as the lambda calculus. For a short introduction, see
Wikipedia [6].

In combinatory logic, each primitive combinator comes with a reduction rule
which describes how the combinator is evaluated. The term on the right hand side
of such a rule may contain only variables that are present on its left hand side.
For example,

k x y = x

defines a combinator K that takes two arguments and evaluates to the first one,
ignoring the second.

It is evident that any such primitive combinator can be expressed as a closed
lambda term (one containing no free variables) that performs the same compu-
tation as the corresponding reduction rule. Often in the lambda calculus (and
functional languages) any closed lambda term is called a combinator.

Remark 1. In the literature, combinators are usually denoted by uppercase let-
ters. However, Haskell reserves identifiers starting with an uppercase letter for
constructors. Therefore, when referring to combinators in general, I will use up-
percase letters, such as K, and when referring to actual Haskell functions I will
use lowercase letters, such as k .

The combinators K, I and S

Two of the most widely used combinators are K and S (they will be defined later).
Their importance comes from the fact that any (untyped) lambda calculus term
can be converted to another term which:

I performs the same computation, and
I uses only function application, the two combinators K and S, and no lambda

abstraction.
For more information, see Barendregt [4]. The actual conversion process is called
abstraction elimination, and we will discuss it in detail later.

Remark 2. From the point of view of the lambda calculus, the converted term is
not the same object as the original term. For us, however, it is important that
these two terms perform the same computation. We will call (any) two terms that
perform the same computation extensionally equal or just equivalent.

37



The Monad.Reader Issue 17

The two combinators K and S can be defined (in Haskell notation) as follows:

k x y = x
s x y z = (x z ) (y z )

Note that k is just Haskell’s const function. It is also convenient to define one
more combinator, called I:

i x = x

which corresponds to Haskell’s id function.
In Haskell, the types assigned to these combinators are:

k :: a → b → a
s :: (a → b → c)→ (a → b)→ a → c
i :: a → a

Exercise 3. The I combinator is redundant. Try to create I using just the combi-
nators S and K and function application. (You will find the answer on page 41.)

Example 4. The term λx y → y x is equivalent to s (k (s i)) (s (k k) i).

The reader monad

The reader monad (also called the environment monad) encapsulates computations
which read values from a shared environment. For example, suppose that you read
a configuration for your program from a file and you wish to pass the configuration
to several different functions. Instead of passing the configuration as another
argument of your functions, you can define them using the reader monad and use
monadic combinators to bind them together.

There are actually two variants of the reader monad in the Haskell library. The
first one, called Reader (see [7]), is generally more useful and better known. It is
defined as follows:

newtype Reader r a = Reader {
runReader :: r → a
}
instance Monad (Reader r) where

return a = Reader $ λ → a
m >>= k = Reader $ λr → runReader (k (runReader m r)) r

The other one is ((→) r). I always found this type very obscure and cryptic, until
I realized that this is just the reader monad. It is a type function that maps a

38



Petr Pudlák : The Reader Monad and Abstraction Elimination

type a to r → a, just like the Reader monad, but without wrapping it into the
constructor. Its monad instance is defined as:

instance Monad ((→) r) where
return a = λ → a
m >>= k = λr → k (m r) r

Indeed it is almost the same as the instance of Monad (Reader r); only the con-
structor Reader and its unwrapping counterpart runReader are missing.

We could use both these monads for our purpose, but ((→) r) will make the
presentation much clearer, since we will be spared from constant wrapping and
unwrapping of the constructor. Therefore, from now on, I will refer just to the ((→
) r) monad.

The types of the reader monad functions

Let us take a closer look at the types of the reader monad functions:

return :: a → r → a
(>>=) :: (r → a)→ (a → r → b)→ r → b

The similarity to the types of the combinators k and s is immediate. But we can
do even better. Every monad gives rise to an applicative functor. The two essential
functions of every applicative functor f are:

pure :: a → f a
(<∗>) :: f (a → b)→ f a → f b

The function pure is the same as return and (<∗>) is the same as the derived
monadic function ap.

Let us call the applicative functor induced by the reader monad the reader
applicative functor. Instances of the respective functions for the reader applicative
functor have these types:

pure :: a → r → a
(<∗>) :: (r → a → b)→ (r → a)→ r → b

The types of pure and (<∗>) are the same as the types of K and S. Moreover,
pure must be equivalent (perform the same computation) to K and (<∗>) must
be equivalent to S. We may prove the equivalence from their definition, but in
this case, we can deduce it just from their types. Since these functions are fully
polymorphic, they have no way of constructing their return values other than
combining their arguments. The function pure has no way of obtaining a result of
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type a other than returning its first argument. The function (<∗>) can compute
a result of type b only by first applying its second argument of type r → a to its
third argument of type r , thereby computing an intermediate value of type a, and
then applying its first argument of type r → a → b to its third argument and the
intermediate value.

(Many things can be deduced just from the type of a function. See Wadler’s
article [8] for more information.)

Abstraction elimination

In this section we will take a closer look at the process of abstraction elimination.
We will show how to use pure and (<∗>) to convert Haskell terms containing lambda
abstractions into abstraction-free terms.

Suppose we have a term of the form λx → s . We want to convert this term into
an equivalent one which is free of the lambda abstraction. First, we recursively
apply the procedure to s and convert it into a term t which is abstraction-free and
equivalent to s . Now the simplified task is to eliminate just the single abstraction
from λx → t .

Let the type of λx → t be r → a, where x :: r and t :: a. We will define a
transformation J·Kx which will map the term t with (possible) free occurrences
of x to an abstraction-free term JtKx :: r → a, such that JtKx is equivalent to
λx → t .

Observe that since JtKx is of the type r → a, it is actually a value in the reader
monad ((→) r). Therefore, we can construct and combine various J·Kx expressions
using the monad (or applicative functor) functions.

Because t is already abstraction-free, it must be one of the following terms:

A term that does not contain x as a free variable. Note that this includes the
case when t is just a variable different from x . We simply set JtKx = pure t .

The term t is equal to the variable x . In this case, we set JxKx = id .

The term t is a function application t = u v . There must be types a and b such
that t :: a, v :: b and u :: b → a. If we recursively transform u and v , we get
two terms JuKx :: r → (b → a) and JvKx :: r → b.

Recall the type of (<∗>) :: (r → (b → a)) → (r → b) → (r → a). This
function does just what we need. It applies a function within the reader
applicative functor to a value within the reader applicative functor. Therefore
we simply combine the two terms with (<∗>) and we set Ju vKx = JuKx<∗>
JvKx.
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In essence, we are recursively lifting ordinary terms into applicative functor com-
putations within the reader applicative functor. Simple terms are lifted using pure
and id and function applications are lifted using (<∗>).

Remark 5 (Answer to Exercise 3). The I combinator can be expressed as SKK.
Therefore, if in the second step we want to be perfectionists and if we do not mind
less efficient code, instead of JxKx = id we can write

JxKx = (<∗>) pure pure = pure<∗>pure

Example 6. Let us recall Example 4 and transform λx y → y x step by step.
First, we will compute a term equivalent to λy → y x :

Jy xKy = (<∗>) JyKy JxKy
= ((<∗>) id) (pure x )

(We keep the prefix notation in order to simplify the next step.) Second, the term
equivalent to λx → (λy → y x ) is:

JJy xKyKx = J((<∗>) id) (pure x )Kx
= J(<∗>) idKx<∗>Jpure xKx
= (pure ((<∗>) id))<∗>(JpureKx<∗>JxKx)
= (pure ((<∗>) id))<∗>((pure pure)<∗> id)

which, converted to prefix notation, gives

= (<∗>) (pure ((<∗>) id)) ((<∗>) (pure pure) id)

In the language of the SKI combinators, it is s (k (s i)) (s (k k) i).

More examples – converting Haskell programs

I could not resist the temptation to write a very simple converter for Haskell
programs. It converts only explicit lambda abstractions and copies everything
else as it is. Therefore it actually works only on very special Haskell programs.
At the end, I thought that the program was not very illustrative. So I used it
only for creating a few examples and I decided not to include it in this article.
Nevertheless, if you want to play around with the ideas, the program is bundled
with the sources for this issue of The Monad.Reader, available from http://code.

haskell.org/~byorgey/TMR/Issue17/Convert.lhs.
Since the functions pure and (<∗>) are applicable to many possible applicative

functors, the compiler fails when trying to infer the most general form of our terms.
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It is therefore necessary to define aliases for these functions which are explicitly
typed for the reader applicative functor:

pure ′ = pure :: r → (a → r)
(<~>) = (<∗>) :: (r → (a → b))→ (r → a)→ (r → b)

Example 7 (Fibonacci sequence). Let us convert some slightly more complicated
code. I chose a recursive function for computing the Fibonacci sequence. Since
the translation program does not translate pattern matching nor the if-then-else
construct, one must define if-then-else as a combinator:

ite :: Bool → a → a → a
ite c x y = if c then x else y

Then we define a function that computes n-th Fibonacci number:

fib :: Int → Int
fib = λx → ite (x 6 1) 1 (fib (x − 1) + fib (x − 2))

The translation program converts fib to:

fib = ((((pure ′ ite)<~>
((((pure ′ (6))<~> id)<~>(pure ′ 1))))

<~>(pure ′ 1))
<~>
((((pure ′ (+))<~>

((pure ′ fib)<~>
((((pure ′ (−))<~> id)<~>(pure ′ 1)))))

<~>
((pure ′ fib)<~>

((((pure ′ (−))<~> id)<~>(pure ′ 2)))))))

While this definition is far from efficient nor comprehensible, it uses just function
application, parentheses, combinators and numeric primitive functions.

Reducing the length of the output

It is obvious from the preceding examples that the output term can be much larger
than the input term. Indeed, the length of the output can be as large as Θ(3n)
where n is the length of the input term. There are various strategies for improving
conversion. For example, see Chapter 16.2 in Peyton Jones’s book [2], or Chapter
5.2 in Barendregt’s [4], which also references several papers on the subject.
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In this article I will discuss just one optimization, which is adding two more
specialized combinators. Recall the step that eliminated a variable x of type x :: r
from a term (u v) ::a, where u and v have some types u ::b → a and v ::b. If x was
free in (u v), we defined Ju vKx = JuKx<∗> JvKx. But we did not check whether x
is free in u, in v or in both. Let us split this step and specialize for these cases:

If x is free in both u and v , there is not much room for improvement. We do
what we did before and put Ju vKx = JuKx<∗>JvKx.

If x is free in just u, we do not have to translate v . By translating u we get
JuKx :: r → (b → a). If we “insert” somehow v into u’s second argument, we
get the desired result. We can achieve this by applying Haskell’s function
flip :: (a → b → c)→ (b → a → c) to u. This function takes a function and
returns a new function that performs the same computation, but with its two
arguments flipped. Now flip JuKx, with type flip JuKx :: b → (r → a), can
be applied directly to v , so we can define Ju vKx = flip JuKx v . Interestingly,
flip is a combinator well known in the literature and is called C.

If x is free in just v , we do not have to translate u. Speaking in monad language,
we have an impure value JvKx and a pure function u. At this point you might
be already thinking of the higher-order lifting functions liftA or (<$>). The
function (<$>), which in the case of applicative functors is the same as fmap
or liftA, takes a pure function and lifts it into an applicative functor:

(<$>) :: Applicative f ⇒ (a → b)→ (f a → f b)

The instance of (<$>) for the reader applicative functor is of the type

(<$>) :: (a → b)→ (r → a)→ (r → b)

This is the same type as function composition:

(◦) : (a → b)→ (r → a)→ (r → b)

Again, just from the types we can deduce that the instance of (<$>) for the
reader applicative functor is equivalent to (◦). Therefore we may set

Ju vKx = u<$>JvKx

or more simply

Ju vKx = u ◦ JvKx

The function (◦) (or the instance of (<$>) for the reader applicative functor)
is also known in literature as the combinator B.
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Examples revised

Let us apply this optimization to our previous examples. The term from Example 4
will be converted as:

Jλx y → y xKx = flip id

And the function for computing Fibonacci sequence

fib = λx → ite (x 6 1) 1 (fib (x − 1) + fib (x − 2))

from Example 7 will be converted to

JfibKx = ((ite ◦ ((6) ‘flip‘ 1)) ‘flip‘ 1)<~>
(((+) ◦ (fib ◦ ((−) ‘flip‘ 1)))<~>(fib ◦ ((−) ‘flip‘ 2)))

Certainly, this is a significant improvement.

Conclusion

We described a process of abstraction elimination by means of the reader applica-
tive functor. The process can be viewed as a gradual lifting of terms into instances
of the reader applicative functor using pure or id and then combining them with
(<∗>).

The process is exactly the same as the classical replacement of lambda terms by
the SKI combinators. However, I feel that visualising the process as operations on
the reader applicative functor gives a new and inspiring insight into the process
and reveals the underlying idea. It certainly did for me.

We have also discovered that several functions from the standard library and
from the library of applicative functors correspond to well known combinators.
They are summarized in Table 4.1.
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