Quick Fixes for novice programmers: effective but under-utilised

Neil C. C. Brown
King’s College London
London, UK
neil.c.c.brown@kcl.ac.uk

Pierre Weill-Tessier
King’s College London
London, UK
pierre.weill-tessier@kcl.ac.uk

ABSTRACT

Professional software development environments typically provide
“quick fixes” for common program errors: a common solution to
an error that can be enacted with a single click. For example, an
“unknown type” error can be fixed by adding an import for the
type, or an “unknown variable” error can be fixed by changing
a misspelt identifier to match the name of an already-declared
variable. The BlueJ environment recently added some support for
quick fixes, and in this paper we use the associated Blackbox dataset
to investigate how they are used by novice programmers. We use a
combination of automatic filtering of over 100 000 quick fixes, and
manual categorisation of 900 programming session fragments. We
find that acceptance of suggestions ranges from 1-17% for different
quick fix types, usually within 3-5 seconds, and many manually
performed alternatives are similar to the actions of unselected quick
fixes. Furthermore, we find that users are faster and are more able
to make productive progress when quick fix support is available,
especially for fixing imports. This data can be used to inform design
of future quick fix systems. There are pedagogical arguments for
and against providing such a feature to novice programmers and
we provide some initial discussion on the matter.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; - General and reference — Empirical studies.

KEYWORDS

Quick fixes, Blackbox, Programming education

ACM Reference Format:

Neil C. C. Brown, Jamie Ford, Pierre Weill-Tessier, and Michael Kélling.
2023. Quick Fixes for novice programmers: effective but under-utilised. In
The United Kingdom and Ireland Computing Education Research (UKICER)
conference (UKICER 2023), September 07—08, 2023, Swansea, Wales Uk. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3610969.3611117

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0876-3/23/09...$15.00
https://doi.org/10.1145/3610969.3611117

Jamie Ford
King’s College London
London, UK
jamie-ford@outlook.com

Michael Kélling
King’s College London
London, UK
michael.kolling@kcl.ac.uk

Scanner. s;

Unknown type: Scanner
« Fix: Import class java.util.Scanner

« Fix: Import package java.util (for Scanner class)
» Fix: Correct to: Scatter
« Fix: Correct to: Spinner (javafx.scene.control package)

Figure 1: A screenshot of a compiler error with four suggested
clickable quick fixes in BlueJ’s Java editor.

1 INTRODUCTION

Programmers of all levels of ability encounter errors in their pro-
grams. For compiled languages, this usually comes in the form of
compiler errors. Some of these compiler errors are complex errors
that require much thought to solve. However, many of these errors
result from trivial mistakes that are made by many programmers,
and often they have an obvious fix. For example:

e An “unknown type” error that is encountered for a type that
is available in the standard library (such as ArrayList in Java)
may be fixed by importing a class or a package.

e Modifying a variable name to match a similarly-named decla-
ration (e.g. “totl” to “total”) is a common way to fix “unknown
identifier” errors when there is a similar name already declared.

e Adding a surrounding try/catch statement is a common way to
fix an “uncaught exception” error.

Many of these fixes are likely to be useful to the programmer
and they require a relatively trivial modification of the program’s
source code. In these cases, professional development environments
add quick fixes: usually shown as a popup window next to the error,
they offer a list of around 1-3 fixes, which modify the program
source to implement the fix (see Figure 1 for an example). Thus, the
error can be very quickly solved, and productivity — usually the
key metric in professional environments — can be increased.

For novices, there is clearly a different trade-off. We want novices
to learn. In the extreme case, if there was a button for “write my
whole program” (perhaps via Al) this would be ideal for experts and
worthless for novices: very productive but no learning would ensue.
In the more modest case of quick fixes this trade-off is still present:
do quick fixes prevent novice programmers getting stuck on trivial
errors and thus increase learning overall, or do they rob novices
of valuable learning experiences, thus keeping them in a state of
shallow understanding? To explore this question, we first need data
about how novices use quick fixes when they are available.

https://orcid.org/0000-0001-6086-2479
https://orcid.org/0000-0002-0129-7796
https://orcid.org/0000-0002-6999-8767
https://orcid.org/0000-0003-0544-2003
https://doi.org/10.1145/3610969.3611117
https://doi.org/10.1145/3610969.3611117

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

Quick fixes were recently added to the Blue] environment’s Java
editor (see Figure 1). Their usage was subsequently recorded in the
Blackbox data set [3], providing a useful opportunity to observe
novice usage in the wild. To develop an initial understanding of
how novices use this feature, our research questions (RQs) are:

e RQ1: Which quick fixes were most frequently presented to users,
and which were most frequently used?

e RQ2: How long did users take to select a quick fix from the
presented list — is it a quick decision or a long consideration?

e RQ3: If users did not enact a quick fix, did they modify the line
themselves in a way that could have used the quick fix?

e RQ4: How do novices act differently when quick fix support is
entirely unavailable, versus when it is available (regardless of
whether they use them or not)?

2 RELATED WORK

Compiler error messages are a longstanding area of interest in com-
puting education. Becker et al. [2] surveyed the extensive work that
has been done on investigating and improving the error messages.
However, to our knowledge there has been relatively little investi-
gation of quick fixes. We define quick fixes as: a suggestion shown
alongside a compiler error message that can be executed to modify
the user’s code with a probable fix for the error, which are offered
without knowledge of what the user is trying to achieve. Thus we
are not interested in next-step hints (which involve knowledge
of the user’s aim), or general code quality suggestions (which are
not in response to an error), or hints that cannot be automatically
executed such as in the work by Marwan et al. [8].

Phothilimthana and Sridhara [10] investigated students request-
ing hints with compiler error messages, but the hints could not be
automatically executed. Hartmann et al. [5] investigated showing
potential code fixes to students, but they judged the usefulness of
the fixes manually rather than looking at whether users chose to
enact them (which was only a partially-supported feature). Ahmed
et al. [1] investigated student performance with tools to help fix
syntax errors, but they investigated overall performance when the
tool was available, without specifically looking at executions of
fixes with the tools. They found that quick fixes did help students
resolve errors more quickly when available.

We believe this paper is the first detailed large-scale investigation
of student use of automatically-executable quick fixes for compiler
errors, which investigates how and when the fixes are used.

3 DATA

Blue] is an IDE for Java and Stride primarily used by novices, with
a median age of 16. Of their users, 70% are in secondary education
and 64% are using it for their first programming experience [4].
The Blackbox dataset has been collecting data from opted-in Blue]
users since 2013 [3]. The strength of the Blackbox dataset is its
global reach and large size, albeit with a weakness that all users
are anonymous and with no information on demographics or their
intended activity, etc. For the current observational study, we do
not believe that this reduces its usefulness.

Quick fixes were added to Blue] in version 5.0.0 in January 2021,
but they were not recorded into Blackbox until version 5.0.3, re-
leased 28 March 2022. In this study we will use the data from Blue]

Neil C. C. Brown, Jamie Ford, Pierre Weill-Tessier, and Michael Kélling

Table 1: The number of times each fix action was offered
and executed. Multiple fixes can be offered for the same
error. Some fixes are always offered together (e.g. solving
an unknown class by importing the class or whole package)
hence there are some duplicate offered counts. The final
column is the executed count divided by offered count, to
give relative rates of take-up. These figures are low mainly
because users often do not use any available quick fixes, but
also because at most one fix can be chosen when multiple
are offered. Therefore, 100% is possible for a given row, but
not for the all actions row, even if the users always selected
a fix. These fixes were shown across 1 842 411 errors, so the
maximum overall take-up for all actions would be 1 842 411
/2908 694 = 63.342%.

Quick fix action Number / Number = Percentage

executed offered executed
Spelling/typo 94870/ 1194216 = 7.944%
correction
Add class import 41494/ 238123 = 17.425%
Add local variable 13305/ 574659 = 2.315%
declaration
Add package import 6401/ 238123 = 2.688%
Add field declaration 5245/ 574659 = 0.913%
Replace = with == 3893/ 60261= 6.460%
Add throws declaration 2514/ 16 654 = 15.095%
Add try/catch 1400/ 11999 = 11.668%
statement
All actions 169 122/ 2908 694 = 5.814%

Table 2: The Damerau-Levenshtein case-insensitive edit dis-
tances of the spelling-correction fixes that were offered to
the user, and that were chosen by the user to be executed.
Zero distance is possible if the only difference was the case.
Note that some errors may result in multiple fixes being
shown, and thus the last column could not be 100% even if a
fix was always chosen, because users can only select at most
one offered fix. The total number of errors with an offered
spelling correction fix was 522 439, therefore there were on
average 783 009/522 439 = 1.499 offered spelling correction
fixes whenever there was at least one.

Edit distance ~ Number / Number = Percentage

executed offered executed
0 11060/ 106104 = 10.424%
1 20 231/ 460743 = 4.391%
2 6687/ 216162 = 3.094%
Total 37978/ 783009 = 4.850%

5.0.3, up to a cut-off of 23:59:59 UTC, 31 December 2022, look-
ing at quick fixes in Java programs. The study was carried out in
accordance with the research ethics process at our institution.
The following four sections (section 4 to section 7) explain the
method and results for each of our four research questions in turn.

Quick Fixes for novice programmers: effective but under-utilised

02 Add throws declaration
0.1
0.0
03 . -
02 m Add variable declaration
0.1 ‘ -
~0.0 - -
203 X
502 Add import
o1 I
300 [] -
o3 o
502 I Replace = with ==
301 I
g 0.0 - ..--— __________
0.3 [| -
02 Correct spelling
0.1 —
0.0 -
0.3
02 Add try/catch
0.1
0.0 ; - - :
0 10 20 30

Time (seconds)

Figure 2: The proportional frequency (within each quick fix
action) of the time taken by the user to click to execute the
fix. Times beyond 30 seconds are excluded.

4 FREQUENCIES (RQ1)

We queried the text for each quick fix from Blackbox for the speci-
fied time period, and we categorised them according to their action.
(For example, “Add import for java.util. ArrayList” and “Add import
for java.awt.Window” perform the same action: add a class import.)
Then we used the counts of each across all the data.

There are several different Java compiler errors that can trigger
Blue] quick fixes. The overwhelming majority of errors (over 95%)
that have a quick fix offer are “cannot find symbol”. This error
indicates that a particular identifier in the program does not match
a previously declared or imported name.

The error message does not uniquely determine the available
quick fixes, however, as an unknown identifier could be fixed by
adding an import or correcting a typo. The frequencies of different
offered quick fixes are shown in Table 1. Correcting spelling of an
identifier to a similar identifier (e.g. “Peice” to “Piece”) is the most
frequently shown kind of fix, followed by adding a declaration of a
missing variable. Table 1 also shows frequencies of executed quick
fixes, including relative rates. For example, where a user sees an
offer to fix a spelling correction, they click it 7.944% of the time.

The spelling/typo correction fix compares the lower-case version
of the found unknown identifier to other declared identifiers in the
code. The edit distance is calculated using the Damerau-Levenshtein
algorithm (with cost 1 for delete, insert, replace and swap). Any
identifier with an edit distance < 2 is suggested. The edit distances
of the chosen identifiers are shown in Table 2. An edit distance of
zero is possible in this calculation where the two identifiers only
differed by case, suggesting this is often the problem, and these
instances are where users are most likely to execute the fix.

5 TIMINGS (RQ2)

For calculating the time taken, we use the time between the fix
being shown and the fix being executed. Note that Blackbox has
both a source time (on the originating computer) and a server time

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

Table 3: The average time taken for the user to click the fix
to execute (non-executed fixes are excluded) for each kind of
quick fix action. Times greater than 30 seconds are excluded.
The bottom row has the average across all actions. The use
of the average rather than median is explained in Section 5.

Quick fix action Average time (seconds)

Correct spelling/typo 3.772
Add variable/field declaration 4.689
Add class/package import 3.655
Replace = with == 3.534
Add throws declaration 4.662
Add try/catch statement 5.289
All actions 3.847

(when the event is recorded on the Blackbox server). It is important
that we use the source time because there can be an unpredictable
lag between the event being generated on the originating computer
and being recorded into the database. For timings that may only be
a few seconds it is important to use the source time.

The timing of the quick fixes being shown and being executed
are recorded using wall-clock time, to the second, so the difference
between the two times is an integer number of seconds (and can be
zero, in some cases where the user clicked in under a second). Thus
the data is more granular than we might like, given that the mode
(most common value) of the time to click is one second for all fixes.

We performed some preprocessing of the times after looking
at the data. All of the times have a very long tail (up to several
days long) so we only look at the times up to a maximum of 30
seconds, which excludes the 3.5% of the data values in the long
tail beyond that. As is shown in Figure 2, the timings of all of the
fixes is quite skewed towards the low end and there is no major
difference between any of the quick fix actions in this regard.

The average time (after the values greater than 30 seconds have
been excluded) is shown in Table 3. Although the average is not usu-
ally recommended on skewed distributions, the mode is identical
for each and on this coarse integer data the median is uninforma-
tive (it is either 2 or 3 for all), therefore the average is the most
informative summary measure here.

One possible concern is that users may be mindlessly selecting
fixes without actually reading them, so we checked if the time
to select differs significantly by category (which would indicate
the users do differentiate between the fixes). A Kruskal-Wallis test
confirms that the effect of fix-action is statistically significant at
a = 0.05 (H(5) = 3418.7, p < 0.001), although this is to be expected
on such a large sample, because statistical tests are significant even
for small differences when sample sizes are very large [6, 7].

6 MANUAL FIXES (RQ3)

Given that the rate of quick fix selection is relatively low, an obvious
question is: what are users doing if they don’t choose the quick fix?
This is a difficult analysis to perform automatically as there may
be quite a variety of code editing behaviours. Thus we analysed
this manually: we randomly sampled 100 cases for the three most
frequently used quick fix actions where the fix was shown but not

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

Table 4: The actions taken by the user after a quick fix was
shown, but no fixes were executed, for 100 randomly sampled
instances of each of (a) an import class/package quick fix, (b)
a spelling/typo quick fix, and (c) a variable/field declaration
quick fix. The time is the median time between the error and
the action taking place.

Action Count Time (secs)

(a) Added class import manually 44 25.5
Added package import manually 22 13.0
Removed line with error 14 34.5
Fixed existing import 9 37.5
Edited type usage 1 119.0
Unavailable
Did not fix during session

(b) Corrected name 54 5.0
Declared variable 11 29.0
Removed line with error 10 37.0
Imported type 9 79.5
Changed line another way 7 20.0
Declared class 2 484.0
Did not fix during session 7

(c) Renamed to match existing variable 33 6.5
Declared variable on line 19 3.0
Removed line 15 12.0
Declared local variable before line 9 39.0
Declared field 7 43.0
Changed line another way 6 14.0
Renamed existing declaration 4 25.0
Did not fix during session 7

executed. We then analysed the editing behaviour afterwards on
that line in order to classify the subsequent user actions.

Table 4 part (a) shows the results of this process for add-import
quick fixes. It can be seen that in two-thirds of cases the users
performed the suggested quick fix edit manually, but more slowly
than the average time to select the quick fix (3.655 seconds). Part
of the reason for the slow time is that users did not necessarily fix
the error immediately: sometimes they performed other edits and
then went back to add the necessary imports.

Table 4 part (b) shows the results of this process for spelling/typo
correction quick fixes. It can be seen that in 54 of the 100 cases
the users did correct the identifier (and on further examination, 48
of these 54 were to items within an edit distance of 2, so to items
that would have been shown in the quick fixes). This was done
fairly quickly, with a median of 5.0 seconds compared to the 3.772
average time to select such a quick fix.

Table 4 part (c) shows the results of this process for variable
declaration quick fixes. In this case, the line like “foo = 2” for an
unknown variable foo is changed to “_type_ foo = 2” with the
type placeholder selected so the user can immediately enter the
type. Users were actually faster manually adding the type (median
3 seconds) than using the quick fix and then writing the type (mean
of 4.7 seconds). In 26 cases the manual fix was one of the suggested

Neil C. C. Brown, Jamie Ford, Pierre Weill-Tessier, and Michael Kélling

fixes (19 for local variable, 7 for field), but the majority had alterna-
tive fixes: 33 cases instead renamed the variable usage, 4 renamed a
declaration, and 9 declared a local variable at some other location.

7 WITH VS WITHOUT (RQ4)

The manual alternatives to fixes are not the complete story. They
do not tell us whether the act of merely seeing the fix helped users,
or what the users who did execute a fix would have done had the
automatic fix not been available. For this, we need to compare what
users do when quick fixes are available, to what they do when quick
fixes are not available at all. Thankfully, this data is available in
the form of a natural experiment: before and after quick fixes were
added to Blue]. We can compare the actions of users when quick
fixes are not available, to when quick fixes are available.

There are two possible baselines for the unavailable case, each
with a potential confound. We could pick users from the equivalent
time period in Autumn 2020 before quick fixes were added to Blue].
This was during the COVID-19 pandemic when classes were likely
to be virtual, and is two years prior. Previous research [4] has
shown that seasonality is a major factor so choosing the same
time of year is important, but long-term trends are relatively slow
(and no obvious effect of the pandemic on usage was found [4], so
choosing 2020 should not be a problem). Another alternative is to
pick users in the same time period in 2022 from the 18% of users
who have not upgraded their Blue]J version to BlueJ 5. We do not
know if this is for a reason, however: maybe they are more likely
to be at institutions with less IT support, maybe they are longer-
lasting users who have been using Blue] for years. Ultimately, we
processed both these options rather than picking one. We compared
(a) users from the same annual time period (October and November)
in 2020 vs (b) a set from 2022 without quick fix support vs (c) a set
in 2022 with quick fix support. To ensure we were comparing like-
for-like activity, we picked out occurrences of the compiler error
“unknown symbol - class Scanner” (the most frequently unimported
type that quick fixes are shown for) to see what users did next, and
did the same for the compiler error “cannot not find symbol - name”
(where the “name” part was allowed to vary in case; confusingly,
the actual name “name” was the most frequently occurring variable
name found among the quick fix suggestions).

Table 5 shows the outcome of tagging such instances without
quick fix support available in 2020 and in 2022, to when it was
available in 2022, for the unknown type Scanner. It seems that
users were much more able to fix import errors with quick fix
support available: 76 out of 100 ended up with a correctly imported
type with quick fix support available, compared to 43 out of 100
and 61 out out of 100 without quick fix support. These actions were
also performed much faster when quick fix support was available.

Table 6 shows the analogous outcome for the unknown identifier
“name”. Here, the benefit of the quick fixes is less clear. With quick fix
support users were more likely to fix lower/upper case errors or add
adeclaration in place, but this seems to be instead of other successful
fixes rather than not fixing: 82 out of 100 fixed the error with quick
fix support, in contrast to 81 out of 100 and 83 out of 100 in the
baselines. This will have been affected by our choice of “name” as
the erroneous identifier; had we picked “lenght” (the most popular
obvious typo) the fixes would have been composed much more of

Quick Fixes for novice programmers: effective but under-utilised

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

Table 5: In response to an error about the unknown type Scanner, the counts of actions taken in 100 instance without quick fix
support in 2020 and 2022, compared to 100 other instances with it available. The actions above the middle line are those that

successfully resulted in an imported type. The times are median times between the error and the action taking place.

Count Time (seconds)

Fix Without (2020) Without (2022) With | Without (2020) Without (2022) With
Added class import 26 22 50 63.0 27.0 11.5
Added package import 9 26 13 84.0 36.0 25.0
Edited existing import 8 13 11 215 14.0 15.0
Edited type usage 0 0 1 3.0
Fully qualified usage 0 0 1 1151.0
Removed line 25 23 13 23.5 3.0 3.0
Otherwise edited line 6 0 2 40 123.5
Unavailable 1 0 1

Did not fix during session 24 16 8

Table 6: In response to an error about the unknown identifier “name”, the counts of actions taken in 100 instance without quick
fix support in 2020 and 2022, compared to 100 other instances with it available. The actions above the middle line are those that
successfully resulted in an imported type. The times are median times between the error and the action taking place.

Count Time (seconds)

Fix Without (2020) Without (2022) With | Without (2020) Without (2022) With
Changed to another name 38 40 28 5.0 9.5 12.0
Case changed (e.g. name to Name) 7 7 20 3.0 4.0 5.0
Declaration added on same line 3 7 15 33.0 80.0 15.5
Local declaration added on earlier line 7 5 6 68.5 33.0 16.0
Field declaration added 9 4 7 32.0 69.0 30.0
Other fix 9 15 3 27.0 48.0 7.0
Removed line 12 11 11 12.0 6.0 24.0
Did not fix during session 9 6

changing to another name. Out of the name changes, most were
to items beyond edit distance of 2, but often (41 of 106 items) they
had name as a substring of the destination variable (e.g. “surname”),
suggesting that there may be more effective matching strategies
for alternatives than simply edit distance (with the caveat earlier
about “lenght” where clearly edit distance is a useful strategy).

8 DISCUSSION

The most frequently offered and most frequently executed kind of
fix is that of spelling correction, but it is proportionally not selected
as often as some other actions (see Table 1). Splitting the fixes by
edit distance (see Table 2) shows that these fixes are selected much
more often when it is only an upper/lower case difference rather
than an identifier with differing characters. This suggests that case
sensitivity (which is required by Java) is a common issue for many
novice programmers. This may be particularly confusing for users
whose native language does not have the concept of upper- and
lower-case letters (such as Hebrew or Arabic).

The most frequently accepted fix was adding a class/package im-
port, followed by adding a throws declaration or try/catch statement
for an exception. We believe these are for different reasons. The ne-
cessity for imports in programs is one of book-keeping which does
not require particular understanding (or lend much pedagogical
benefit), has a clear outcome, and users seem happy to be assisted
with this. The fixes for exception handling are taken up frequently

(especially cumulatively, given they are usually offered together:
27% are taken up). This may be because the implementation is more
laborious for try/catch (which involves adding several lines of code)
and users want assistance — but the same is not true for adding a
throws declaration, which consists of adding at most two identi-
fiers. We believe these are taken up because users do not know the
correct way to deal with exceptions and thus take the assistance
because they would not know how to fix the problem manually.
In general, the fixes are taken up very quickly. The mode of the
time taken between seeing and executing the fix is 1 second, and the
average is under 4 seconds. This can either be taken as indication
that the fixes are trivial and easily selected, or as indication that
the users are doing so without thinking much about it. The general
pattern of times does not differ noticeably between the fix actions,
but spelling corrections and imports are selected more quickly
than adding variable declarations or exception constructs. This
seems reasonable: simple fixes are more quickly selected than more
complex selections, lending evidence to the idea that users are
thinking before clicking. The fixes are also selected with widely
varying relative frequencies, from 1-17% of the time offered, which
would not happen if users always executed the fix without thinking.
If users do not execute the fix, the most common behaviour is to
manually execute the action of the quick fix. This provides useful
confirmation that the quick fix offered is often the correct fix for the
problem, but it raises the question as to why users do not use the

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

quick fix. It could be that the users are unclear what will happen,
although this seems quite obvious (e.g., adding an import). It could
be that the users do not trust the automatic fix: they worry about it
messing up code style. Or perhaps they have an instinctive reaction
against their code being edited for them, as if someone had taken
their pen and written a sentence in their essay. It presumably is
not the case that users do not understand how the fix will help
given that they proceed to implement it manually. The fix text is
deliberately terse to avoid unnecessary explanation, but Marwan
et al. [8] found that next-step hints were taken up more if they
were accompanied by an explanation. Murphy-Hill et al. [9] found
that among professional developers, around 90% of refactorings
(e.g., variable renames) were performed manually without using
the available refactoring tools. They posit that it may be a usability
issue, although quick fixes are simply clicked once, so this seems
less likely. Perhaps the answer is habit: users are used to editing
the code manually and they do not think the quick fix will be any
faster. This has some support in the data: for correcting a name, it
does seem that the manual time (5-7 seconds) is not much slower
than the time taken to select the quick fix (3-4 seconds). However,
seeing the fix suggestion may have enabled them to perform the
manual edit faster than not seeing the suggestion at all.

An obvious potential follow-up study is to interview a sample of
users to discuss their opinions about quick fixes. Are users simply
ignoring them as a matter of course? Do they mistrust them or think
they offer no benefit? As always with large anonymous datasets,
they provide a useful starting point for a more focused follow-up
study, rather than providing the complete picture by themselves.

There is also potential future work in considering if some of
the fixes should be tweaked (for example, how similar names are
picked for correction) or considering implementing fixes for other
errors (such as missing semi-colons/brackets, or mismatched types
in method calls). Blue]J deliberately has fixes that are simple and
very likely to be correct (which is backed up by the data here) but
this could be expanded upon in future versions.

8.1 Pedagogical considerations with quick fixes

A recurring theme in the discussion of educational development
environments is the extent to which any particular tool offered helps
or hinders the learning of the concepts being studied. Opponents of
additional tooling usually argue that any kind of automation may
enable students to create the solution without developing a full
understanding of the concepts, while proponents of tools posit that
additional help can prevent students getting stuck, thus increasing
success and motivation, and leading to better learning experiences.
This debate will only intensify with the availability of new Al-based
code generation tools.

Experiences over the last decades have shown that movements
to avoid or restrict available technologies in learning situations
typically had little benefit beyond leaving students unfamiliar with
modern software tools. No evidence has emerged that the availabil-
ity of ever more sophisticated development environments has led to
shallower understanding. Pedagogically, it seems clearly preferable
to incorporate existing tools into a pedagogical approach than to
create an artificial environment where we pretend they do not exist.
Novice programmers will exit education into a world where these

Neil C. C. Brown, Jamie Ford, Pierre Weill-Tessier, and Michael Kélling

tools exist, so it seems sensible to prepare them to use them in a
professional capacity.

9 CONCLUSION

This paper is the first detailed look at the usage of quick fixes among
novice programmers. We find that the fixes are correct, where they
are taken up it is within a few seconds, but the take-up rate is
low, with many users instead manually implementing the quick fix
instead. To expand on these points, the answers to our research
questions from section 1 are as follows:

RQ1: The most frequently presented fix was to correct spelling
(shown for 65% of fixable errors), followed by adding a variable
declaration (32%) and adding an import (13%). Proportionally,
the fixes that were most commonly executed when shown were
adding an import (executed 17% of the times it is shown) followed
by adding a throws declaration or try/catch statement (15% and
12%) and then spelling correction (8%). Spelling corrections were
more often taken up when it was only the case (upper/lower)
that needed correcting.

RQ2: Users took on average 3.8 seconds to select a quick fix, with a
peak at 1 second followed by a long tail. There were statistically
significant differences in the time taken between different fixes
(3.5 seconds for replacing = with ==, up to 5.3 seconds for adding
try/catch), suggesting that users were reading and considering
the fixes rather than clicking without thinking.

RQ3: When users did not select the quick fix, the most common
action was to perform a manual edit equivalent to the one offered
by the quick fix. There are several possible explanations for why
they do not use the quick fix: mistrust, habit, a belief that it is no
faster. On the one hand, it shows that the quick fixes are offering
the correct fix for an error, on the other hand, this may be a
necessary but not sufficient criteria for getting users to actually
use them.

RQ4: 76% of users with quick fix support available were able to
fix an issue with an unimported type, compared to 52% of users
without quick support available. They were also able to resolve
the issue more quickly. However, fixes for an unknown variable
did not change the success rate at fixing it, although it did seem
to make it more likely to fix the case or add a declaration, rather
than changing the name.

We believe this shows that quick fixes are worth including for users,
especially in cases where the fix is clearly correct and the fix offers
no particular pedagogical benefit (for example, adding a missing
import). Efforts may need to be directed into understanding why
users do not use them, or ways to adjust the exact implementa-
tion (for example, changing what constitutes a similar name for
suggesting identifier corrections).

ACKNOWLEDGMENTS

We are grateful for the King’s Undergraduate Research Fellowship
(KURF) scheme which supported this project. We thank Brett Becker
and Andreas Stefik for their advice on related work.

Quick Fixes for novice programmers: effective but under-utilised

REFERENCES

[1] Umair Z. Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare.

2020. Characterizing the Pedagogical Benefits of Adaptive Feedback for Com-
pilation Errors by Novice Programmers. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Education
and Training (Seoul, South Korea) (ICSE-SEET °20). Association for Computing Ma-
chinery, New York, NY, USA, 139-150. https://doi.org/10.1145/3377814.3381703
Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177-210.
https://doi.org/10.1145/3344429.3372508

Neil C. C. Brown, Michael Kélling, Davin McCall, and Tan Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
223-228. https://doi.org/10.1145/2538862.2538924

Neil C. C. Brown, Pierre Weill-Tessier, Maksymilian Sekula, Alexandra-Lucia
Costache, and Michael Kélling. 2022. Novice Use of the Java Programming
Language. ACM Trans. Comput. Educ. 23, 1, Article 10 (dec 2022), 24 pages.
https://doi.org/10.1145/3551393

UKICER 2023, September 07-08, 2023, Swansea, Wales Uk

[5] Bjorn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.

[10

What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 1019-1028. https://doi.org/10.1145/1753326.1753478

Robert M Kaplan, David A Chambers, and Russell E Glasgow. 2014. Big data
and large sample size: a cautionary note on the potential for bias. Clinical and
translational science 7, 4 (2014), 342-346.

Mingfeng Lin, Henry C. Lucas, and Galit Shmueli. 2013. Research Commentary -
Too Big to Fail: Large Samples and the p-Value Problem. Inf. Syst. Res. 24 (2013),
906-917.

Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The Impact of Adding Textual Explanations to Next-Step Hints in a Novice
Programming Environment. In Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education (Aberdeen, Scotland Uk)
(ITiCSE °19). Association for Computing Machinery, New York, NY, USA, 520-526.
https://doi.org/10.1145/3304221.3319759

Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(2012), 5-18. https://doi.org/10.1109/TSE.2011.41

Phitchaya Mangpo Phothilimthana and Sumukh Sridhara. 2017. High-Coverage
Hint Generation for Massive Courses: Do Automated Hints Help CS1 Students?. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 182-187. https://doi.org/10.1145/3059009.3059058

https://doi.org/10.1145/3377814.3381703
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3551393
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/3304221.3319759
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1145/3059009.3059058

	Abstract
	1 Introduction
	2 Related work
	3 Data
	4 Frequencies (RQ1)
	5 Timings (RQ2)
	6 Manual fixes (RQ3)
	7 With vs without (RQ4)
	8 Discussion
	8.1 Pedagogical considerations with quick fixes

	9 Conclusion
	Acknowledgments
	References

