

King’s Research Portal

DOI:
10.1145/3341525.3387404

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Dickson, P. E., Brown, N. C. C., & Becker, B. A. (2020). Engage Against the Machine: Rise of the Notional
Machines as Effective Pedagogical Devices. In ITiCSE 2020 - Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (pp. 159-165). (Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE). Association for Computing Machinery.
https://doi.org/10.1145/3341525.3387404

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 22. Mar. 2021

https://doi.org/10.1145/3341525.3387404
https://kclpure.kcl.ac.uk/portal/en/publications/engage-against-the-machine(3f30344f-9180-4087-b7f5-b4db3b18b74d).html
https://doi.org/10.1145/3341525.3387404

Engage Against the Machine: Rise of the Notional Machines as
Effective Pedagogical Devices

Paul E. Dickson
pdickson@ithaca.edu

Ithaca College
Ithaca, NY, USA

Neil C. C. Brown
neil.c.c.brown@kcl.ac.uk
King’s College London

London, England

Brett A. Becker
brett.becker@ucd.ie

University College Dublin
Dublin, Ireland

ABSTRACT
The term “the machine” is commonly used to refer to the compli-
cated physical hardware running similarly complex software that
ultimately executes programs. The idea that programmers write
programs for a notional machine—an abstract model of an execution
environment—not the machine itself, has risen to the point of gain-
ing acceptance as a useful device in computing education. This has
seeded a growing discussion about how explicitly utilizing notional
machines in teaching can help students construct more accurate
mental models, which is essential for learning programming.

Much of the existing literature necessarily involves specific lan-
guages, visualization, and/or facilitating tools, and is not very ac-
cessible to many practitioners. Less focus has been put on how
teachers can make explicit use of notional machines in their teach-
ing. In this paper we describe notional machines and their use in
a manner that is more accessible to a general educator audience
in order to facilitate more effective computing education at all lev-
els. We advocate explicitly delineating between visualization tools
and the notional machines they depict, isolating and clarifying the
notional machine so that it is conspicuous, apparent and useful.
We present examples of how this approach can facilitate a more
consistent method of teaching computing, and be used in more
effective pedagogical practice for teaching computing.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; CS1.

KEYWORDS
code tracing; code writing; memory diagrams; notional machines;
pedagogy; program construction; stack traces; visualization
ACM Reference Format:
Paul E. Dickson, Neil C. C. Brown, and Brett A. Becker. 2020. Engage Against
theMachine: Rise of the Notional Machines as Effective Pedagogical Devices.
In Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’20), June 15–19, 2020, Trondheim,
Norway.ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.
3387404

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387404

1 INTRODUCTION
The concept of a notional machine was introduced by du Boulay et
al. [13] and further explored by du Boulay [12] in the 1980s [29]. In
the late 1990s it was advocated in Ben-Ari’s work on constructivism
in computing education [2] but did not gain significant momentum
until around a decade later. In 2012 Sorva completed a disserta-
tion focused on the concept [29] closely followed by related work
including [30]. Since then interest has grown; the ACM Digital
Library shows only 27 articles prior to 2012, but 89 since. In 2019
there was a Schloss Dagstuhl seminar on the topic [15] and in 2020
a planned ITiCSE working group. Nonetheless, the recently pub-
lished Cambridge Handbook of Computing Education Research
notes: “Despite some noticeable treatment in the literature, no-
tional machines do not feature prominently in curricula or texts for
computing courses” [20, p383], and a recent comprehensive review
of teaching introductory programming [22] notes that notional
machines are occasionally used for teaching but cites only one ex-
ample [5]. Despite this, topics related to notional machines such
as conceptual and cognitive issues, visualization, reading/writing/-
tracing, and misconceptions have received considerable attention
in recent years [1].

At the highest level, the concept is that programmers do not
construct programs to be executed on an actual “concrete” com-
puter about which they know all necessary detail, but instead con-
struct programs to be executed on an abstraction of the concrete
computer: a so-called notional machine. For example, a notional
machine for C might describe the concept of variables, but make
no mention of whether variables are stored in memory or regis-
ters, which is a hardware detail abstracted away by that notional
machine. In the words of du Boulay et al.: “A notional machine is
the idealized model of the computer implied by the constructs of
the programming language” [13, p237]. These abstractions are by
definition consistent with the behavior of the concrete machine
they represent in the current situation, including detail necessary
for program construction, but omitting much or all unnecessary
detail. Regarding consistency, Berry & Kölling stated: “Whatever
the preferred abstraction level, it is important that the notional
machine is complete and consistent: it must be able to explain all
observable behaviour of the real machine, and reasoning about the
notional machine must allow accurate predictions to be made about
behaviour of the real machine” [4, p22]. However, this must be
balanced with simplicity, as novices begin programming with very
little idea of the properties of the notional machine implied by the
language they are learning [13]. Nonetheless, they are models, and
models have their bounds. However if these bounds are carefully
aligned with the context of use, consistency should be achievable.

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

159

https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/3341525.3387404

For novices with no effective model to start with, being presented
with one could be beneficial, as explained by Ben-Ari [2, p260]:

A (beginning) CS student has no effective model of
a computer. The computer forms an accessible onto-
logical reality. By effective model, I mean a cognitive
structure, that the student can use to make viable,
constructions of knowledge, based upon sensory ex-
periences, such as reading, listening, to lectures and
working with, a computer. By accessible ontological
reality, I mean that a ‘correct’ answer is easily acces-
sible, and moreover, successful performance requires
that a normative model of this reality must be con-
structed.

Notional machines do not necessarily need any special notation;
they just need to convey descriptions of semantic behavior. Educa-
tors may already use something similar, without explicitly calling it
a notional machine, or knowing that it may indeed be a form of one.
The advantage of explicitly acknowledging and pointing this out is
that we can discuss and compare notional machines more easily,
much as naming programming patterns (e.g. the visitor pattern) is
useful for discussing programming at a higher level.

Figure 1 shows the relationship between the physical computer,
its notional machine, and the student/programmer with their men-
tal model. When we teach computer science we are often not at-
tempting to make the student’s mental model of how the physi-
cal computer behaves as accurate as possible. Instead we are at-
tempting to make the student’s mental model of the notional ma-
chine as accurate as possible. We argue that explicitly recognizing
this model—and leveraging the simplicity and consistency that it
can afford—may lead to more effective teaching for general and
introductory-level programming, including at pre-university levels.

Figure 1: Relationship between the student, their mental
model, a notional machine and a physical computer.

In order to grasp the notional machine concept, why it is im-
portant, and how to leverage it, an understanding of several rela-
tionships is required. Figure 1 depicts the relationships between
the computer, notional machine, mental model, and the program-
mer. The dashed arrow represents the programmer explicitly and
purposely writing code to act on the physical computer. When the

student writes code they are not thinking of the execution in terms
of electrons, transistors or even machine instructions. Instead when
they program they usually have a mental model of a notional ma-
chine. The notional machine is a consistent abstraction of how the
physical computer works (at least, consistent to a degree necessary
to complete the task at hand). For example, a notional machine
for Java or Python may include the concepts of references, but
make no mention of memory addresses, which are considered an
implementation detail unnecessary in notional machines for those
languages. As mentioned above, a notional machine is a consistent
abstraction of an execution environment. However this is distinct
from the programmer’s mental model which, unlike the notional
machine, may be inconsistent or incorrect (in the given context).
Conceptually, the more proficient a programmer is, the greater
the overlap (correct knowledge in Figure 1) between the notional
machine and that programmer’s mental model. Ideally, the mental
model and notional machine completely overlap when a student
has become expert with that notional machine, in that context.

Computer programs typically have an abundance of state but by
default, only explicit program output is visible to the programmer.
There is a long history of tools for visualizing the internal memory
state while a program runs, which can have a positive impact while
teaching [23]. While these tools have always had an implicit no-
tional machine as their basis for representation, it is only recently
that some focus has shifted to explicitly describing notional ma-
chines and how the visualization supports them, makes them easier
to comprehend, or more useful [6, 8, 17]. In this paper we continue
this separation of visualizations from notional machines.

The purpose of this paper is to help make the use of notional
machines accessible to a general educator audience. We begin in
Section 2 with a discussion of work on program visualization and
notional machines, before describing some key points about no-
tional machines and their relation to visualizations in Section 3.
Section 4 follows with examples of these relations and differences,
to help elucidate the concept for those not deeply immersed in
the research literature. In Section 5 we discuss the use of notional
machines in teaching, before offering our conclusions in Section 6.

2 RELATEDWORK
Before discussing the relationship between notional machines and
the memory visualization tools associated with them, we briefly
examine the literature on each.

2.1 Program Memory Visualization
Understanding what information computers store, and how it is
stored, is fundamental to programming. Sorva covers these topics
in detail, including the direct link between the ability to program
and the ability to draw or otherwise visualize what is occurring
in the computer memory [29, 31]. These visualizations are often
referred to as stack traces or memory diagrams. These can be drawn
by hand [7, 11, 16, 23] or generated automatically by software [9,
10, 31, 33].

While details of these visualizationmethods vary, what they have
in common is the representation of the state of computer memory
during program execution. Different methods of displaying data
structures may be employed to present memory information in

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

160

what the designers believe to be the most intuitive format. Different
methods also display varying amounts of history of prior state
with automatically generated diagrams typically replacing values
associated with variables as a program is stepped through, while
hand drawn diagrams usually cross-out old values before writing
in new ones, leaving a history of prior state. Wilson et al. go so far
as to trace each line of code almost as one would do when showing
every substitution and step in solving a mathematical equation [35].

An interesting offshoot of visualization that may (depending on
circumstances) more directly connect with notional machines is
studying student visualizations to better understand where gaps in
their knowledge exist. There has been preliminary work conducted
in this area. For instance, Cunningham et al. analyzed student traces
to understand where their mental models fail to match a notional
machine specification [6, 7].

We make no judgment as to what method of visualization is best
and wish only to point out the line delineating visualizations and
notional machines. Examples later in the paper use Ithaca Memory
Diagrams (IMDs) [11] which are a fairly well-defined standard, and
a whiteboard-based visualization.

2.2 Notional Machine Literature
The work of Sorva et al. [28, 30] and Berry & Kölling [3, 4] has been
amongst the most focused on defining notional machines recently.
Berry & Kölling stated that “The notional machine offers an ab-
straction of the physical machine designed for comprehension and
learning purposes.” [3, p25], and also mention the distinction be-
tween notional machines and visualizations. Sorva had previously
stated that “The student uses a given visualization of a so-called
notional machine, an abstract computer, to illustrate what hap-
pens in memory as the computer processes the program.” [29]. This
states clearly that a visualization and a notional machine are dis-
tinct, yet related, entities. Similarly, Berry & Kölling [4, p21] stated:
“We introduce the notional machine & a graphical notation for its
representation.” The key to both of these statements is that like
a concrete computer, a notional machine can be represented by
a visualization, and that they are not necessarily the same thing.
Approaching notional machines from a different direction, when
someone traces the execution of a piece of code they are running
their mental model of a notional machine [30]. This reinforces that
a notional machine is an accurate abstraction of the computer and
different from the mental model, in that the mental model may
include misunderstanding. Running the mental model of a notional
machine in order to trace code means applying a set of rules as to
what code does to change the state of the notional machine.

The concept of a notional machine is obviously intricately related
to that of a semantics in programming language terminology—a
relationship explored in a recent Schloss Dagstuhl seminar. The
resulting report [15, p2] stated “Every semantics has an intended
audience. Formal semantics typically assume a readership with high
computing or mathematical sophistication. These therefore make
them inappropriate for students new to computing. What forms
of description of behavior would be useful to them? In computing
education, the term notional machine is often used to refer to a
behavior description that is accessible to beginners.”

Although introduced in the 1980s by DuBoulay et al. [12, 13] it
wasn’t until around 2008 that work on notional machines started to
appear in the literature with focus, for instance [8, 28]. The work
of Sorva was influential in this period [29–31] followed by other
authors through 2019, including [3, 4, 6, 7, 10, 14, 17, 21, 26, 34, 35].

Some of this work is more focused on memory visualization [8,
10, 21, 24, 34], where notional machines are more secondary. Part
of the reason we are attempting to draw a line between the vi-
sualization of memory and the notional machine concept is that
we believe it is valuable for teachers to be able to choose the best
visualization for their particular context to present with a notional
machine. Research into different methods of visualizing memory,
including their pros and cons, is therefore extremely valuable but
in this case not relevant to the argument we are trying to make.

Johnson et al. made observations supporting the case for no-
tional machines, stating: “Our results indicate that teaching Python
alone (i.e., without reference to an explicit notional machine) leads
to the formation of misconceptions and misunderstandings by stu-
dents” [18, p1]. They claim that Python’s simple structure hides a
deceptively complex notional machine, and that teaching Python
alongside a simpler language (simple enough to reveal a notional
machine similar to that of Python) aids the development of a more
robust mental model.

Others have described using notional machines as part of an
approach to reaching different goals. Hidalgo et al. [17] and Sorva
& Seppälä [32] use notional machines as a basis for rethinking how
to teach CS1. Fisler et al. [14] discuss notional machines in relation
to knowledge transfer in one of the few papers that is not focused
on CS1. Out of the same group came another paper focused on
recursion that includes visualization of the actual mathematical
steps the code runs through while processing, along with memory
state [35]. Cunningham et al. have done interesting work showing
how analysis of student generated visualizations can show problems
with student models of notional machines [6, 7].

3 NOTIONAL MACHINES & VISUALIZATION
Some of the existing work on visualizing notional machines can
be confusing, as many papers refer to “the notional machine” and
then discuss a particular visualization used. There are several key
tenets to understand, which we hope help illuminate and clarify
the difference between the two:

• Any given programming language can have a wide variety
of notional machines, which may be at different levels of
complexity.

• The suitability (and complexity) of a notional machine de-
pends on the context of its use.

• A notional machine and a visualization usually relate closely,
but a notional machine may have multiple possible visualiza-
tions, and a visualization may be useful for multiple notional
machines.

We will explain each of these points in turn.

3.1 Myriads of Notional Machines
Programming languages are rich and complex constructs as are the
machines that execute them. Partially for this reason there is no

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

161

single notional machine for a given programming language. Con-
sider for example, evaluating a simple expression such as (1+ 2)× 5.
One notional machine could refer to using a stack for evaluation,
transforming the expression to reverse Polish notation and pushing
the result of 1 + 2 on to the stack, before popping it to multiply by
5. Another notional machine could refer to substitution, explaining
that the result of 1 + 2 is substituted into the original expression to
give 3 × 5. Both of these notional machines are correct, and both
omit unnecessary detail (for example, the fact that the numbers are
represented in binary in a computer is an unnecessary detail here
as it often is), but they take different approaches to abstracting and
modeling the execution.

As well as having notional machines with different approaches
as above, notional machines often have a subset relation, especially
when teaching. A simple notional machine for Java in the first
week may treat int and String as simple atomic types. The details
about String being a class and the variable being a reference to an
object with an internal array of Unicode characters could be initially
omitted—but a more complex notional machine that included more
of these details could be explained in later teaching when useful.

3.2 Notional Machines, Suitability, & Context
This example leads into our next point. A notional machine for
early teaching may be grossly simplified. This may cause some
instructors to feel uneasy, as if they are teaching something that is
incorrect. However, incompleteness should not be confused with
incorrectness. When a child writes their first English sentence we
tell them that the first word starts with a capital but other words
do not. When we then add in that names also begin with a capital
letter, it should be seen as adding detail, not that the earlier rule
was incorrect. Both are correct and consistent—in the context of
the student level, the task, and the goal of that instance.

Simple notional machines make sense for early teaching (as orig-
inally stressed by du Boulay et al. [13]) and more complex notional
machines for later teaching. However, no notional machine really
reaches completeness, and all (by definition) omit unnecessary de-
tail. What detail is unnecessary is often contextual, and a matter of
fine judgment, for both educators and professionals. For example,
many programmers in high-level languages do not concern them-
selves with the fine detail of which memory is likely to be cached,
and just ignore memory access speed in their notional machine,
whereas others who are in a context where performance is of great
importance may include that as part of their notional machine.

3.3 Notional Machines & Visualizations
A visualization is invariably tied to particular features of a notional
machine. For example, a visualization depicting a stack during an
expression’s evaluation is implicitly based on a notional machine
with stack evaluation. A visualization typically shows some changes
in state, and thus it relates to a notional machine that features
that state. To help elucidate this concept, the next section features
examples of visualizations and notional machines, and how they
relate to each other.

4 EXAMPLES
In this section, we present two concrete examples. In the first we
show how a single notional machine can be used with different
visualizations, and how different visualizations can highlight dif-
ferent features and connotations. In the second example, we show
how one visualization may relate to different notional machines.

4.1 Basic Variable Example with Multiple
Visualizations

Consider the following description of a very basic notional machine
used in many first programming classes:

Variables are names that have values assigned to them.
An assignment statement stores the result of the right-
hand side of the expression into the variable on the
left-hand side, replacing any previous value.

The code sample in Listing 1 shows a small piece of code that ini-
tializes two variables then re-assigns one, to help demonstrate this
notional machine. We will describe two different visualizations of
executing this code in this notional machine.

Listing 1: Simple variable example code.
int num1 = 4

int num2 = 5

num1 = num1 + num2

4.1.1 Memory diagram. When the code from Listing 1 is traced
using an Ithaca Memory Diagram (IMD), the result is shown in
Figure 2. The variables created in memory are shown on the left
while the values that are stored for them on the stack are shown on
the right. The memory diagram shows state as it is updated as each
line of code is executed. When the first line of code runs, the num1
and the 4 are written into the diagram. The second line of code
results in num2 next to 5, and the third line results in the 4 being
crossed out and 9 written. The IMD shows previous values stored
in memory by virtue of them still appearing on the stack though
now crossed out to show that the value no longer exists.

Figure 2: IMD trace of Listing 1.

4.1.2 Whiteboard associations. Figure 3 shows an alternative visu-
alization where variables are listed on the left, values on the right,
and where lines between the two are redrawn when values change.
So after the first two lines (of code), num1 has a line to 4, and num2
has a line to 5, but after the third line (of code), the line from num1
is erased, and a new line drawn from num1 to 9.

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

162

Figure 3: Trace of Listing 1 simulated on a whiteboard.

4.1.3 Notional machine. Both of these visualizations are a consis-
tent representation of the single notional machine explained earlier.
However, they have different features, which can have pros and
cons. For example, the IMD shows the history of the variables,
whereas the whiteboard does not. The IMD thus allows students
to see the history of the execution, but also invites a possible mis-
conception that the variable may somehow remember its previous
values, or store more than one at a time. Alternatively, the white-
board example persistently shows the numbers 1-9, which may give
rise to the misconception that only these numbers are representable
in variables. Our key point is that although these visualizations
faithfully depict the same notional machine, they have different
affordances and connotations.

4.2 Array Example With Multiple Notional
Machines

The second example (Listing 2) has a C-like syntax for assigning
arrays. We will give two different notional machines that could be
used to execute this code:

• The first has immutable arrays. When an array is created,
it is allocated on the heap, but its values can no longer be
changed. Arrays are garbage-collected when no longer in
use.

• The second has mutable non-shared arrays that has storage
allocated on the heap, but they are deallocated immediately
when the reference is overwritten or goes out of scope.

Listing 2: Basic array example code.
int[] array1 = [1, 2, 3]

array1 = [4, 5, 6]

Figure 4 shows a visualization of Listing 2 generated by an IMD
trace of the code. The first line results in the variable array1 with
a memory address of 0xA1 on the stack and values stored on the
heap with a location of 0xA. An arrow and memory addresses are
used to show that the memory address on the stack corresponds to
the location on the heap. The second line results in a new location
(0xB) and values on the heap and a replacement of the location
stored on the stack, with the old location and arrow to the location
on the heap crossed out. A red line is used to cross out the data at
memory location 0xA to indicate that the memory is deallocated.

1In IMDs, memory locations are randomly assigned and come in the form of 0x
followed by a hexadecimal number. This is done to help illustrate that the data is stored
on the heap in a location and that the location is stored on the stack associated with
the variable but without having to worry about how the heap address is assigned. The
data is also shown as a contiguous chunk of memory for clarity even if values may
not be contiguous on the heap.

Figure 4: IMD trace of Listing 2. The line through the values
in address 0xA indicate that they have been deallocated.

The mechanism for indicating that memory is released on the heap
in an IMD is the line through that data.

The single IMD visualization applies equally to both of our quite
different notional machines, because they share the same array cre-
ation and deallocation semantics in this example. So a visualization
does not have to be unique to one notional machine, and indeed
many common visualizations of variable state can apply to a large
range of notional machines, either for the same language, or across
different languages. For instance, basic variable manipulation can
be visualized the same way for C, Java, Python and so on.

5 NOTIONAL MACHINES AS A
PEDAGOGICAL TOOL

In this section we discuss the use of notional machines as an explicit
concept that instructors can utilize in practice. This was advocated
in the late 1990s by Ben-Ari who noted [2, p260]:

...themodel of a computer—CPU,memory, I/O peripherals—
must be explicitly taught and discussed, not left to
haphazard construction and not glossed over with
facile analogies. Teaching the model can be done us-
ing epistemic games—formalized procedures for con-
structing knowledge—such as a model computer [27]
or a ‘notional machine’ [12].

5.1 Notional Machine Considerations
Notional machines provide advantages and disadvantages. They can
be used to make apparent to students that the notional machine is a
model of program execution, but not perhaps the ground truth. This
is consistent with the fact that much learning is often accomplished
with models. Disciplines such as physics (e.g. Newton vs relativity)
and chemistry (e.g. models of atoms) have a history of explaining
simple models to beginners that are expanded in later teaching. By
explicitly conveying that our execution models are indeed models,
we set the stage for properly scaffolding later learning.

Like choosing a programming language [22] or environment [19],
it can be difficult to choose a good notional machine. Apart from
being infinite in number, many instructors have learned modern
languages like Java by adapting their knowledge of languages like C.
Consider the broad-brush statement that Java is like C but with ob-
jects instead of structures. Similarly, instructors may try to explain
a notional machine for Java with memory addresses for references,
replicating their own learning journey [25]. However, Java permits
no pointer manipulation, so a simpler and more or less equivalent
notional machine can just omit the idea of memory addresses in

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

163

favor of the heap as an abstract set of objects. However, care must
be taken when doing so. Similarly, instructors can often be tempted
to include too much detail. In the course of conducting teacher
training, the authors have often heard statements like “of course,
the students must understand assembly”. The temptation to reach
to the next layer down is exactly what notional machines should
help to prevent. If the machine is consistent, it is unnecessary to
teach a lower level. Trying to teach the entire implementation of a
computer in the first course stands to erode the gains brought about
by higher level abstractions and higher level languages which have
advanced programming practice.

5.2 Use of Visualizations
The earlier examples illustrate how a memory visualization may
be considered separately from the notional machine as a whole,
and how visualizations can be chosen semi-independently of the
notional machine. This means that there remains freedom in the
choice of visualization tool to use for a given course, even once
a notional machine is chosen. It also means that courses that are
currently built around memory visualization tools can add in a no-
tional machine component without requiring a shift of visualization
method. Finally, it also suggests that it may be possible to use the
same visualization method between multiple courses with a basis in
notional machines, in an effort to reduce extraneous cognitive load.
As the notional machine used in a particular class need only be
consistent for the material presented at the time it may be possible
to start with a simplified version of a visualization method that
gradually adds detail as concepts become more complex in a course
or between courses, ensuring that the particular notional machine
always meets the requirement of being consistent. This is akin to
language levels—a feature offered by languages such as Racket.2

Another consideration is that having a clearer picture of what
a notional machine is (versus a memory visualization or a mental
model) can help clarify concepts for students. At aminimum, having
educators with a clearer view of their mental model / visualization /
notional machine relationship must have positive effects. By using
multiple memory visualization tools in combination with the same
set of rules for how code corresponds to computer memory, we can
show the same concepts from multiple perspectives. This can lead
to discussions with students of how tracing code is in fact them
running their mental model of a notional machine. It helps students
to understand why it is important that they can create memory
visualizations from code. Seeing where their diagrams are wrong
exemplifies where their mental models are inaccurate in relation to
the notional machine—which in most cases is what educators teach
students to program, whether intentionally or not.

5.3 Teaching Strategies
The challenge in a constructivist notional machine framework is
having students construct a correct (or at least functional) mental
model from the presented notional machine. It seems a reasonable
approach to explicitly teach that notional machine, which can be
conceived of as the ideal mental model we would like students to
have (for present requirements). In other words if teachers explicitly
teach a notional machine, chances of success could be greater.

2https://racket-lang.org/

One way of explicitly referencing the use of a notional machine
in class would be in relation to teaching pointers in C/C++. In this
situation IMDs explicitly list a memory address for anything on the
stack as a two-digit hexadecimal number and anything on the heap
as a 3-digit hexadecimal number. In actuality all of the memory
addresses will be of the same format and longer than 2-3 digits
(often demonstrated by printing actual memory addresses in code
examples)—but by utilizing this abstraction in our notional ma-
chine we are drawing student attention to the differences in storage
location. We have used this in class and found that students under-
standing of pointers seemed to be helped by an explicit reference
to a notional machine and why the notional machine abstracted
the way it did in the example.

Imagine a textbook for introductory programming that is built
around presenting a notional machine and building it from one
concept to the next. In the chapter where variables are introduced
the notional machine from Section 4.1.3 could be included, for
instance.With each new concept, depth can be added to the notional
machine being presented in the text. The additional information
would not change any of the results presented previously but would
instead just add detail as required to obtain new results from more
complex problems. Such an incremental development (especially
if students are a witness to, or participant in the shaping of this
evolving notional machine) may avoid misconceptions that would
otherwise be encountered due to students trying to fill in flaws or
gaps in their learning. We believe that this what some textbooks
already do, but most often rather implicitly. By drawing out the
explicit concept of the notional machine, both authors and readers
can be clearer that the rules of the notional machine are being
expanded and built upon—abstraction in action.

6 CONCLUSIONS
Notional machines, code tracing, mental models and program vi-
sualization are often appear conflated in the literature at least to
non-experts. In this position paper we sought to clarify the differ-
ences between these, presenting notional machines in a manner
that is hopefully more accessible to a general audience.

We demonstrated that from a teaching point-of-view, program
visualization and notional machines are two different things: the
former is about presenting program state, and the latter is about
the rules that govern how that state comes about. With these two
concepts decoupled, it can enable us to teach each more precisely.
With regard to visualizing memory, it suggests that a generic visual-
ization method that can work for multiple languages would be most
effective in teaching as it would allow the same visualization to be
used for multiple notional machines. This should make it easier for
courses to just focus on the differences in the rules that govern the
notional machine and therefore reduce cognitive load.

We believe that explicitly discussing notional machines will help
educators be more clear about their own practice, in a similar way
to programmers discussing concepts like code smells or decoupling
can allow a clearer discussion of program construction. By explicitly
and intentionally separating the notional machine from adjacent
concepts like mental models and visualization, we can deliberately
design and use appropriate notional machines at each stage in our
teaching, and achieve clearer understanding among our students.

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

164

https://racket-lang.org/

REFERENCES
[1] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of

the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 338–344. https:
//doi.org/10.1145/3287324.3287432

[2] Mordechai Ben-Ari. 1998. Constructivism in Computer Science Education. In
Proceedings of the Twenty-Ninth SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’98). Association for Computing Machinery, New York, NY,
USA, 257–261. https://doi.org/10.1145/273133.274308

[3] Michael Berry and Michael Kölling. 2013. The Design and Implementation of a
Notional Machine for Teaching Introductory Programming. In Proceedings of the
8th Workshop in Primary and Secondary Computing Education (WiPSE ’13). ACM,
New York, NY, USA, 25–28. https://doi.org/10.1145/2532748.2532765

[4] Michael Berry and Michael Kölling. 2014. The State of Play: A Notional Machine
for Learning Programming. In Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education (ITiCSE ’14). ACM, New York,
NY, USA, 21–26. https://doi.org/10.1145/2591708.2591721

[5] Michael Berry and Michael Kölling. 2016. Novis: A Notional Machine Implemen-
tation for Teaching Introductory Programming. In 2016 International Conference
on Learning and Teaching in Computing and Engineering (LaTICE). 54–59.

[6] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017.
Using Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (ICER ’17). ACM, New
York, NY, USA, 164–172. https://doi.org/10.1145/3105726.3106190

[7] Kathryn Cunningham, Shannon Ke, Mark Guzdial, and Barbara Ericson. 2019.
Novice Rationales for Sketching and Tracing, and How They Try to Avoid It.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 37–43. https:
//doi.org/10.1145/3304221.3319788

[8] Tonci Dadic, Slavomir Stankov, and Marko Rosic. 2008. Meaningful Learning in
the Tutoring System for Programming. In ITI 2008-30th International Conference
on Information Technology Interfaces. IEEE, 483–488.

[9] Andrew R. Dalton and William Kreahling. 2010. Automated Construction of
Memory Diagrams for Program Comprehension. In Proceedings of the 48th Annual
Southeast Regional Conference (ACM SE ’10). ACM, New York, NY, USA, Article
22, 6 pages. https://doi.org/10.1145/1900008.1900040

[10] Peter Donaldson and Quintin Cutts. 2018. Flexible Low-cost Activities to Develop
Novice Code Comprehension Skills in Schools. In Proceedings of the 13thWorkshop
in Primary and Secondary Computing Education (WiPSCE ’18). ACM, New York,
NY, USA, Article 19, 4 pages. https://doi.org/10.1145/3265757.3265776

[11] Toby Dragon and Paul E. Dickson. 2016. Memory Diagrams: A Consistant Ap-
proach Across Concepts and Languages. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY,
USA, 546–551. https://doi.org/10.1145/2839509.2844607

[12] Benedict du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-
9RRF-67T8-UVK9

[13] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The Black Box Inside the
Glass Box: Presenting Computing Concepts to Novices. International Journal of
Man-Machine Studies 14, 3 (1981), 237–249.

[14] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). ACM, New York, NY, USA, 213–218. https://doi.org/10.
1145/3017680.3017777

[15] Mark Guzdial, Shriram Krishnamurthi, Juha Sorva, and Jan Vahrenhold. 2019. No-
tional Machines and Programming Language Semantics in Education (Dagstuhl
Seminar 19281). Dagstuhl Reports 9, 7 (2019), 1–23. https://doi.org/10.4230/
DagRep.9.7.1

[16] Matthew Hertz and Maria Jump. 2013. Trace-based Teaching in Early Pro-
gramming Courses. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 561–566.
https://doi.org/10.1145/2445196.2445364

[17] Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, and Vladimir Lara-Villagrán.
2016. Understanding Notional Machines Through Traditional Teaching with Con-
ceptual Contraposition and Program Memory Tracing. CLEI Electronic Journal
19, 2 (2016), 3–3.

[18] Fionnuala Johnson, Stephen McQuistin, and John O’Donnell. 2020. Analysis of
Student Misconceptions Using Python as an Introductory Programming Lan-
guage. In Proceedings of the 4th Conference on Computing Education Practice 2020

(CEP 2020). Association for Computing Machinery, New York, NY, USA, Article
Article 4, 4 pages. https://doi.org/10.1145/3372356.3372360

[19] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for ComputingMachinery, New York, NY, USA, 759–765.
https://doi.org/10.1145/3328778.3366882

[20] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming Paradigms and
Beyond. In The Cambridge Handbook of Computing Education Research, Sally A.
Fincher and Anthony V. Robins (Eds.). Cambridge University Press, Chapter 13,
377–413. https://doi.org/10.1017/9781108654555.014

[21] Derrell Lipman. 2014. LearnCS!: A New, Browser-based C Programming En-
vironment for CS1. J. Comput. Sci. Coll. 29, 6 (June 2014), 144–150. http:
//dl.acm.org/citation.cfm?id=2602724.2602752

[22] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE 2018
Companion). Association for Computing Machinery, New York, NY, USA, 55–106.
https://doi.org/10.1145/3293881.3295779

[23] Thomas L. Naps, Guido Rossling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
and J. Angel Velazquez-Iturbide. 2002. Exploring the Role of Visualization and
Engagement in Computer Science Education. SIGCSE Bull. 35, 2 (June 2002),
131–152. https://doi.org/10.1145/782941.782998

[24] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). ACM, New York, NY, USA, 2–11. https://doi.org/10.1145/
3105726.3106178

[25] Amanda Oleson and Matthew T. Hora. 2014. Teaching the Way They Were
Taught? Revisiting the Sources of Teaching Knowledge and the Role of Prior
Experience in Shaping Faculty Teaching Practices. Higher Education 68, 1 (01 Jul
2014), 29–45. https://doi.org/10.1007/s10734-013-9678-9

[26] Josh Pollock, Jared Roesch, Doug Woos, and Zachary Tatlock. 2019. Theia:
Automatically Generating Correct Program State Visualizations. In Proceedings
of the 2019 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019). ACM, New
York, NY, USA, 46–56. https://doi.org/10.1145/3358711.3361625

[27] Lorraine Sherry. 1995. A Model Computer Simulation as an Epistemic Game.
SIGCSE Bull. 27, 2 (June 1995), 59–64. https://doi.org/10.1145/201998.202016

[28] Juha Sorva. 2008. The Same but Different Students’ Understandings of Prim-
itive and Object Variables. In Proceedings of the 8th International Conference
on Computing Education Research (Koli ’08). ACM, New York, NY, USA, 5–15.
https://doi.org/10.1145/1595356.1595360

[29] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Ed-
ucation; Visuaalinen Ohjelmasimulaatio Ohjelmoinnin Alkeisopetuksessa. Ph.D.
Dissertation. Aalto University, Espoo, Finland. http://urn.fi/URN:ISBN:978-952-
60-4626-6

[30] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. https://doi.org/10.
1145/2483710.2483713

[31] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. Trans. Comput.
Educ. 13, 4, Article 15 (Nov. 2013), 64 pages. https://doi.org/10.1145/2490822

[32] Juha Sorva and Otto Seppälä. 2014. Research-based Design of the First Weeks of
CS1. In Proceedings of the 14th Koli Calling International Conference on Computing
Education Research (Koli Calling ’14). ACM, New York, NY, USA, 71–80. https:
//doi.org/10.1145/2674683.2674690

[33] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: A Software Tool for Visual Program
Simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli Calling ’10). ACM, New York, NY, USA, 49–54.
https://doi.org/10.1145/1930464.1930471

[34] Li Sui, Jens Dietrich, Eva Heinrich, and Manfred Meyer. 2016. A Web-Based
Environment for Introductory Programming Based on a Bi-Directional Layered
Notional Machine. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA,
364–364. https://doi.org/10.1145/2899415.2925487

[35] Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi. 2018. Evaluat-
ing the Tracing of Recursion in the Substitution Notional Machine. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM, New York, NY, USA, 1023–1028. https://doi.org/10.1145/3159450.3159479

Session: Student Understanding ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

165

https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/273133.274308
https://doi.org/10.1145/2532748.2532765
https://doi.org/10.1145/2591708.2591721
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3304221.3319788
https://doi.org/10.1145/3304221.3319788
https://doi.org/10.1145/1900008.1900040
https://doi.org/10.1145/3265757.3265776
https://doi.org/10.1145/2839509.2844607
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.4230/DagRep.9.7.1
https://doi.org/10.4230/DagRep.9.7.1
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/3372356.3372360
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1017/9781108654555.014
http://dl.acm.org/citation.cfm?id=2602724.2602752
http://dl.acm.org/citation.cfm?id=2602724.2602752
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1007/s10734-013-9678-9
https://doi.org/10.1145/3358711.3361625
https://doi.org/10.1145/201998.202016
https://doi.org/10.1145/1595356.1595360
http://urn.fi/URN:ISBN:978-952-60-4626-6
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2674683.2674690
https://doi.org/10.1145/2674683.2674690
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/2899415.2925487
https://doi.org/10.1145/3159450.3159479

	Abstract
	1 Introduction
	2 Related work
	2.1 Program Memory Visualization
	2.2 Notional Machine Literature

	3 Notional Machines & Visualization
	3.1 Myriads of Notional Machines
	3.2 Notional Machines, Suitability, & Context
	3.3 Notional Machines & Visualizations

	4 Examples
	4.1 Basic Variable Example with Multiple Visualizations
	4.2 Array Example With Multiple Notional Machines

	5 Notional Machines as a Pedagogical Tool
	5.1 Notional Machine Considerations
	5.2 Use of Visualizations
	5.3 Teaching Strategies

	6 Conclusions
	References

