
Machine Learning-Based Automated Grading and Feedback Tools
for Programming: A Meta-Analysis

Marcus Messer
Department of Informatics
King’s College London

London, UK
marcus.messer@kcl.ac.uk

Neil C. C. Brown
Department of Informatics
King’s College London

London, UK
neil.c.c.brown@kcl.ac.uk

Michael Kölling
Department of Informatics
King’s College London

London, UK
michael.kolling@kcl.ac.uk

Miaojing Shi
College of Electronic and Information Engineering

Tongji University
Shanghai, China

mshi@tongji.edu.cn

ABSTRACT
Research into automated grading has increased as Computer Sci-
ence courses grow. Dynamic and static approaches are typically
used to implement these graders, the most common implementation
being unit testing to grade correctness. This paper expands upon
an ongoing systematic literature review to provide an in-depth
analysis of how machine learning (ML) has been used to grade
and give feedback on programming assignments. We conducted a
backward snowball search using the ML papers from an ongoing
systematic review and selected 27 papers that met our inclusion
criteria. After selecting our papers, we analysed the skills graded,
the preprocessing steps, the ML implementation, and the models’
evaluations.

We find that most the models are implemented using neural
network-based approaches, with most implementing some form
of recurrent neural network (RNN), including Long Short-Term
Memory, and encoder/decoder with attention mechanisms. Some
graders implement traditional ML approaches, typically focused
on clustering. Most ML-based automated grading, not many use
ML to evaluate maintainability, readability, and documentation, but
focus on grading correctness, a problem that dynamic and static
analysis techniques, such as unit testing, rule-based program re-
pair, and comparison to models or approved solutions, have mostly
resolved. However, someML-based tools, including those for assess-
ing graphical output, have evaluated the correctness of assignments
that conventional implementations cannot.

CCS CONCEPTS
• General and reference→ Surveys and overviews; • Computing
methodologies→Machine learning; • Applied computing→

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588822

Computer-assisted instruction; • Social and professional topics
→ Computing education.

KEYWORDS
Machine Learning, Automated Grading, Computer Science Educa-
tion, Meta-Analysis
ACM Reference Format:
Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi. 2023.
Machine Learning-Based Automated Grading and Feedback Tools for Pro-
gramming: A Meta-Analysis. In Proceedings of the 2023 Conference on In-
novation and Technology in Computer Science Education V. 1 (ITiCSE 2023),
July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3587102.3588822

1 INTRODUCTION
As computer science class sizes increase, the number of assign-
ments to grade also increases [21], resulting in further research into
automated grading and feedback. The use of automated graders
for programming tasks originated in the 1960s [19]. Since then, re-
search has primarily focused on grading the correctness of students’
source code using dynamic and static analysis techniques [3, 28].

We define four criteria for grading programming assignments:
Correctness: Typically can be the syntactic correctness (can the
program compile), the correctness of the implementation (has the
student implemented the intended functionality?) or the correct-
ness of methodology (has the student implemented the specific
method or language feature the instructor has requested?).
Maintainability: Evaluates the effectiveness of a student’s im-
plementation of code that is easily extensible in the future. This
could include designing a code base to minimise coupling and
maximise cohesion, whether the student used polymorphism and
inheritance correctly, or whether the student used functions to
reduce duplicated code.
Readability: Assesses how easy to comprehend a student’s sub-
mission is. While maintainable code can make the code more
understandable, other source code characteristics can also indi-
cate whether the code is readable. Including following code style
principles, naming classes, methods, and variables in meaningful
ways, substituting constants for magic numbers, and indenting
code at the correct levels.

https://orcid.org/0000-0001-5915-9153
https://orcid.org/0000-0001-6086-2479
https://orcid.org/0000-0003-0544-2003
https://orcid.org/0000-0002-4933-0073
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/3587102.3588822

ITiCSE 2023, July 8–12, 2023, Turku, Finland Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi

Documentation: Gauges whether a student’s docstrings and in-
line comments are sufficient to explain their code to other program-
mers. This typically includes validating that the documentation
exists, relates to the code it is explaining and is not overly com-
mented on with comments that state the obvious.
There is some discussion of when maintainability, readability and
documentation should be included when grading novice program-
ming assignments, whether that is grading these skills in CS1/CS2
classes or in later courses such as Software Engineering. While
this discussion is important and requires further research, this arti-
cle includes auto-graders from all levels computer science courses,
from use of block-based languages to grading of maintainability in
a 200-level course [10].

This article builds upon an ongoing systematic literature review
on automated grading and feedback tools for programming assign-
ments. In this meta-analysis, we focus on machine learning (ML)
auto-graders. The implementation of traditional auto-graders is
well-researched; most auto-graders use a dynamic or static tech-
nique [3, 28]. However, less research has been conducted on ML-
based auto-grading of programming tasks. As a result, we intend to
analyse and contrast the various implementations of ML automatic
graders and feedback systems in-depth.

This meta-analysis provides an in-depth analysis of the role of
ML in automated grading and feedback of programming assign-
ments by contributing the following:

• A focused review of machine learning implementations of
automated graders and feedback tools.

• Detailed statistics of machine learning paradigms, categories,
and preprocessing and evaluation techniques.

• An in-depth discussion on the implementations and the gaps
and drawbacks of the current research.

The article is organised as follows: The differences between this
article and related work are discussed in section 2; our methodology
and inclusion and exclusion criteria are outlined in section 3. Section
4 details the articles we investigated and the outcomes of our search,
while section 5 discusses what we observed. Section 6 finalises what
we discovered and outlines future work.

2 RELATEDWORK
Most systematic reviews of automated grading focus on collating
and annotating grading or feedback approaches. Ala-Mutka [3] cat-
egorises automatic grading tools into two types, dynamic and static,
and discusses the benefits and drawbacks of automated assessment.
They conclude that the formally defined source code structures are
amenable to automated assessment and that careful consideration
should be used when incorporating them into education.

While Ala-Mutka investigates grading approaches, Keuning et al.
[20]’s review investigates the automated feedback tools. They define
a set of feedback categories, which include knowledge about task
constraints and knowledge of mistakes. Using these categories, they
annotate their included papers and conclude that most automated
feedback tools offer feedback on solution errors, and that very few
give feedback on how to proceed.

Paiva et al. [28]’s systematic literature review focused on clas-
sifying which computer science domains were automatically as-
sessed and evaluated feedback using Keuning et al. [20]’s feedback

categories. Their review concluded that researchers had tried to au-
tomate the assessment of most practical tasks of the CS curriculum
and that various methods are used to provide feedback, including
automated program repair and source code metrics. Additionally,
they determine that most tools are developed as prototypes for a
specific research study or course and receive no further develop-
ment or wide-scale deployment.

Our ongoing systematic review investigates which programming
skills automated grading and feedback tools evaluate and which
techniques are used. Furthermore, we investigate which language
paradigms are auto-graded and how the tools are evaluated.

Other reviews have investigated how ML can be utilised in auto-
mated grading outside the computer science domain. Zhai et al. [40]
conducted a systematic review of applying ML in natural science
assessments. They concluded that most studies used supervised
ML approaches, and approximately half embedded ML directly into
the learning environment. Systematic literature reviews were also
conducted on prose-based assessments, including short-answer
questions [13] and essays [30]. Both reviews found that neural
network-based approaches were commonly used to assess short-
answer and essay questions.

Our meta-analysis builds on an ongoing systematic literature
review by emphasising the use of ML to automatically grade or
provide feedback on programming assignments – something that,
to our knowledge, has not been covered by any existing reviews.

3 METHODOLOGY
To investigate howML has been implemented in automated graders
and feedback tools, we aim to answer the following research ques-
tion:
RQ1 Which machine learning auto-graders grade fundamental

programming skills?
RQ2 Which techniques are implemented by machine learning

auto-graders to predict a grade or generate feedback?
RQ3 Which criteria are used to assess machine learning auto-

graders, and how do they perform?
As part of our ongoing systematic literature review, we used

two separate search strings in ACM DL, IEEEXplore, and Scopus,
one for automated grading (Listing 1) and the other for automated
feedback (Listing 2). We chose these databases since ACM or IEEE
publishes most Computer Science Education resources. We used
Scopus, the world’s largest abstract and citation database for peer-
reviewed literature, to find additional sources outside of ACM and
IEEE. Our search strings were transformed into each database’s
specific format to verify that the search behaviour was consistent.
We then conducted multiple screening stages to determine if the
articles found should be included in the review.

While completing the final stages of the systematic literature
review, we conducted a backward snowball search [38] using the
14 ML-based papers from the ongoing systematic review. Using
these papers as a basis, we investigated which papers they had
cited to find any other research potentially involving ML applied
to the grading or giving feedback on programming assignments.
After finding potential papers, we analysed the title and abstracts to
determine if they should be included or excluded, using the criteria
found in Table 1. Searching for papers’ references and screening

Machine Learning-Based Automated Grading and Feedback Tools for Programming: A Meta-Analysis ITiCSE 2023, July 8–12, 2023, Turku, Finland

Inclusion Exclusion
The paper is a primary source. The paper is not written in English.
The paper focuses on auto-grading or feedback on source
code.

The paper is not a research study or peer-reviewed.

The tool supports a textual or block-based programming
language.

The paper is not accessible via university subscriptions.

Papers published from 2012 to 2021 inclusive. Papers that do not contain sufficient detail on the ma-
chine learning implementation.

Table 1: The inclusion and exclusion criteria

them against our exclusion criteria was repeated twice, using the
papers from the previous iteration. This resulted in a backward
snowball search with a depth of three.

Our ongoing systematic review limited our search to papers
published from 2017 to 2021 inclusive. In this meta-analysis, we
expanded our search dates to those published between 2012 and
2021 inclusive. Additionally, we decided to include block-based
tools in addition to tools that grade textual programming languages
and exclude papers that did not provide sufficient detail on their
ML implementation. We included block-based tools and expanded
our search dates to increase the proportion of ML papers in the
analysis. While block-based tools are significantly different from
textual programming languages and the learning aims of these
approaches can differ, some block-based ML approaches could be
adapted to textual programming languages.

After completing our initial search for relevant cited papers, we
repeated our backward snowball search approach twice for the
papers we found and included at each level. We then conducted a
full-text screening and extracted data.

To answer our research questions, we extracted and analysed
what core skills the tools graded, their preprocessing steps, the ML
approach, and how the tools were evaluated 1. Additionally, we
grouped specific ML models into overarching categories. The first
is traditional approaches, including statistical-based models like
logistic regression, and the second is neural network-based models,
including convolutional and recurrent neural networks.

(programming OR source code) AND
(grade OR grading OR grader OR

mark OR marks OR marking) AND
(assignment OR exercise OR assessment OR course) AND
NOT(robot∗ OR vulnerability OR ICT)

Listing 1: Grading Search String

(programming OR source code OR student code) AND
(feedback OR hint) AND
(assignment OR exercise OR

submission OR novice programm∗) AND
NOT(robot∗ OR vulnerability OR ICT)

Listing 2: Feedback Search String

1Raw data and data processing repository: https://github.com/m-messer/In-Depth_
Analysis_ML_Graders_Analysis

4 RESULTS
From the initial 14 papers, our backward snowball search resulted
in the following:
Stage 1 52 titles and abstracts screened; 11 included in stage 2.
Stage 2 12 titles and abstracts screened; 1 included in stage 3.
Stage 3 1 included paper.
The 14 initial papers from the systematic review and the 13 from
the backward search resulted in 27 papers to screen during the
full-text review. Nine were excluded, leaving 18 articles from which
to gather data.

Most papers were excluded during the snowball search’s title and
abstract screening because they did not focus on ML, while some
were excluded because they were duplicates or did not grade source
code. Whereas, during the full-text review, most were excluded as
they did not provide sufficient detail on their ML implementation.

In Figure 1, we present the trend in ML implementations in
automated grading and feedback tools. Surprisingly, the trend does
not follow the same upward trend as auto-graders [28]; instead,
it has varying publications per year. This variation might be due
to our exclusion criteria; some papers use ML methods within the
education domain but do not specify their implementation in detail
[9, 11, 26]. They may not include their specific implementation in
their paper as they discuss the pedagogical effect [9], or implement
commercially available approaches [26].

We previously introduced the fundamental programming skills
of correctness, maintainability, readability and documentation; Ta-
ble 2 shows the papers that grade these skills and the ML categories
used. Furthermore, Table 2 shows that most ML-based tools grade

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year Published

0

1

2

3

4

5

6

7

N
um

be
r P

ub
lis

he
d

Figure 1: The number of found publications per year.

https://github.com/m-messer/In-Depth_Analysis_ML_Graders_Analysis
https://github.com/m-messer/In-Depth_Analysis_ML_Graders_Analysis

ITiCSE 2023, July 8–12, 2023, Turku, Finland Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi

or give feedback on the correctness (56%) or syntactic correctness
(33%), a combination of correctness and readability (6%) or correct-
ness and maintainability (6%). However, none of these tools uses
ML to grade documentation. Table 2 also shows that most tools
have implemented a neural network-based approach (61%) or a
traditional approach (33%).

Figure 2 shows the proportion of occurrences for each prepro-
cessing technique; each paper implemented one or more of these
techniques. Most implementations normalize the tokens, such as
converting string or number literals or variables to a specific token
[1, 15–17, 27, 32, 34, 36]. Another popular method is to convert
the source code to a graph, mostly an abstract syntax tree (AST)
[14, 16, 22, 24, 29, 35, 36]. However, one article additionally converts
the source code to control-flow (CFG), and data-dependency graphs
(DDG) [35]. Other preprocessing steps include building a good set
of submissions using unit tests [22, 33, 35], removing comments
[27, 34], and replacing rarely used tokens with a general token [5].

The included papers utilised one or more commonML paradigms.
The most commonly used paradigms used by the tools, were ap-
proaches based on the availability of ground truth data [31]:

• Supervised learning is when a model is trained using some
training set of labelled data and learns a function to map the
features to the label.

• Unsupervised learning models do not require a set of labelled
data; instead, learning through patterns within the data.

• Semi-supervised learning is when the model has a subset of
the overall training data labelled, enabling a model to learn
by combining supervised and unsupervised approaches.

Figure 3 shows that 74% of our included papers utilised a supervised
learning technique and 16% opting for an unsupervised learning
approach. Gupta et al. [15] implemented two models, one that used
a semi-supervised Long Short-Term Memory model, and the other
using a reinforcement learning model. A reinforcement learning
is when the model or agent learns from a series of reinforcements,
either rewards or punishments [31].

We categorised the models into traditional and neural network-
based approaches to investigate the overall trend in the models
that ML-based tools trained to award grades and give feedback.
Traditional approaches include models such as ridge regression
[35], random forest [22] and support vector machines [36]. Neural
network-based approaches include models such as convolutional

ML Category
Neural
Network-
Based

Traditional Both

Sk
il
l

Correctness [10, 16, 27, 29,
34, 39]

[14, 22, 24, 33,
35, 36]

Syntactic
Correctness

[1, 2, 5, 15, 17] [32]

Maintainability [10]
Readability [29]
Documentation

Table 2: The resulting papers, categorised by skill graded and
ML Category. Some papers grade more than one skill.

neural networks (CNNs) [16, 34], recurrent neural networks (RNNs)
[5], Long Short-Term Memory (LSTM) models [15, 27, 32], and
encoder/decoder models [1, 29].

In Figure 4, we show the evaluation techniques used by the
included articles to evaluate their models; some papers included
multiple evaluation techniques. Most models are evaluated on how
accurately they can predict the correct grade or feedback based on
the test data, typically a subset of the original training data [2, 5, 15–
17, 22, 27, 29, 32, 34, 39]. Other standard ML metrics have also been
used, including precision and recall [2, 24, 29], mean absolute error
[32, 33, 36], and Pearson correlation coefficient [33, 35]. Further-
more, some papers opted to compare their models against other
baseline datasets or models [1, 5, 15, 16, 29, 39] or compared to
datasets manually annotated by a human [14, 36, 39]. Additionally,
some implemented cross-validation to validate the stability of their
ML models [33–36], and others chose to perform a case study to
verify how well their tool works when given to students [2, 10, 35].

5 DISCUSSION
5.1 Skills Graded
5.1.1 Correctness. As shown in our results, all ML-based tools we
have analysed focused on automating the grading or feedback of
correctness, either syntactic or functional. Researchers may focus
on grading functional correctness, as one of the aspiring software
engineers’ primary tasks is creating software that meets the de-
sired requirements. A more straightforward and prominent task for
novice software engineers is creating code that can compile, hence
the focus on syntactic correctness. None of the analysed papers
investigated grading the correctness of methodology. This could
be due to static analysis techniques being easier to implement and
more accurate than ML for detecting specific language techniques.

5.1.2 Maintainability. Only one of our analysed papers evaluated
maintainability: Day et al. [10] implemented a multi-layer percep-
tron neural network to generate feedback on both correctness and
maintainability for their Eclipse IDE plug-in. They used a super-
vised learning approach, using data extracted from a student’s code
and events that are detected with the IDE. Though they used a
neural network to generate feedback, the evaluation of correctness
used dynamic and static approaches, such as unit tests and error
types. Similarly, maintainability was evaluated using source code
metrics, a static analysis approach, including the total lines of code
and cyclomatic complexity.

Using a static approach, especially metrics, is a common way to
evaluate maintainability; many of these use data from source code
converted to a graph to calculate a value for evaluation, such as
cyclomatic complexity [25] and depth of inheritance tree [7]. While
using graph structures is a typical approach to evaluate maintain-
ability, the analysed papers use these graphs to grade correctness
[14, 16, 22, 24, 29, 35, 36]. Further research could be conducted into
using these graphs and an ML approach to grade maintainability,
as both techniques have been implemented to evaluate source code.

5.1.3 Readability. Similarly to maintainability, only one of our in-
cluded papers evaluated readability: Piech et al. [29] implemented
an encoder/decoder-based neural network to learn programming

Machine Learning-Based Automated Grading and Feedback Tools for Programming: A Meta-Analysis ITiCSE 2023, July 8–12, 2023, Turku, Finland

0 20 40 60 80 100
Proportion (%)

Normalize tokens
Convert to Source to Graph

 (AST, CFG or DDG)
Build good set using unit tests

Remove commentsP
re

-p
ro

ce
ss

in
g

 S
te

ps

Figure 2 The percentage of preprocess-
ing methods. Results with only one oc-
currence are omitted.

0 20 40 60 80 100
Proportion (%)

Supervised

Unsupervised

Semi-Supervised

Reinforcement LearningM
L

P
ar

ad
ig

m

Figure 3 The proportion of primary ML
paradigm. Some articles implemented
multiple paradigms.

0 20 40 60 80 100
Proportion (%)

Accuracy
Compared To Baselines

Cross Validation
Compared To Models Within Paper

Case Study
Compared To Human

E
va

lu
at

io
n

 M
et

ho
ds

Figure 4 The percentage of evaluation
techniques. Results with only one occur-
rence are omitted.

embeddings to propagate feedback on both correctness and read-
ability.

They utilise Hoare triples [18], tuples containing a precondition,
an executable program, and a postcondition, as the basis of their
dataset. They implement models to encode the precondition to a𝑚-
dimensional feature representation, transform the encoded precon-
dition and executable program to an encoded postcondition, and a
final model to decode the postcondition. Once the encoder/decoder
model has been trained and optimised, they utilise the embeddings,
instructor-annotated feedback, and data from ASTs to recapture
program structure and style elements to train an RNN to propagate
feedback on both correctness and maintainability.

While Piech et al. [29] utilised ASTs in their model to recapture
structure and stylistic elements, otherML research has implemented
models to learn natural coding conventions [4], evaluate method
name consistency [23], and evaluate semantic representations of
identifier names [37], of professional source code. These approaches
could be adapted and expanded to provide grades and feedback on
the readability of novice code.

5.1.4 Documentation. While correctness, maintainability and read-
ability had at least one paper focused on them, documentation was
not evaluated by any of the included articles.

While there is little research into grading documentation, gener-
ating code from the documentation and generating documentation
from code is currently heavily researched. GitHub CoPilot2 is one
such tool that generates code from the documentation. They utilise
a GPT language model called Codex [6] to generate the source code,
while other language models, such as CodeBERT, have been utilised
to generate documentation [12]. PyMT5 is another language model
used to generate source code from documentation and documen-
tation from the source code [8]. These three approaches utilise a
fine-tuned bimodal model, specifically using existing documenta-
tion paired with source code snippets to train their models, which
could be utilised to grade or give feedback on documentation.

5.2 Paradigms Implemented
Most of the included papers have trained their model using a super-
vised method, less than 20% implemented an unsupervised model,
and only one article implemented a semi-supervised or reinforce-
ment learning approach. Gupta et al. [15] implemented a deep rein-
forcement learning model to offer feedback on syntactic correctness.
They opted to use the asynchronous advantage actor-critic (A3C)
algorithm, which utilises multiple actor-critic threads in parallel to

2GitHub CoPilot: https://github.com/features/copilot

stabilise the learning process. The actor-critic thread is an example
of the policy gradient method, which learns both the actor and the
critic, where the critic evaluates how advantageous it is to be a new
state.

They define the A3C algorithm to repair source code, where
the agent can either perform navigate actions, editing the state
of a cursor, or edit actions, editing the state of a string. Using
these actions, an agent attempts to repair the program and is fully
rewarded if the code compiles or partially rewarded if the agent has
fixed at least one error. Using their A3C algorithm, they train an
LSTM to embed the tokenized code into a vector, which is then used
to learn the policy and value functions. To accelerate the training
of their model, they guided their agent with expert demonstrations
of how to repair the source code, thus implementing a pseudo-semi-
supervised reinforcement learning approach.

While Gupta et al. implemented a semi-supervised approach
for their reinforcement model, none of the included papers im-
plemented a typical semi-supervised learning model, such as la-
bel propagation or general adversarial networks. Although semi-
supervised learning reduces the effort required to manually label an
entire dataset, allowing models to be trained using a small subset
of labelled data, they can be more challenging to implement.

Although supervised learning requires a large set of labelled
data, which can be time-consuming to annotate, it can produce
better results and be simpler to implement. The supervised model
can provide better results, as the model has example relationships
between the source code and the grade or feedback. While super-
vised learning can often provide better results, recent research us-
ing unsupervised learning in other software engineering domains
has produced good results, including GitHub CoPilot’s underly-
ing model Codex, which fine-tunes GPT-3, uses an unsupervised
approach to learn a language model [6].

5.3 Categories Implemented
While most of the included papers focus on implementing tradi-
tional or neural network-based approaches, Santos et al. [32] imple-
mented an n-gram model and an LSTM to train language models
to provide feedback on syntactic correctness. They implemented a
10-gram model, where 10 contiguous tokens will be grouped into
a 10-gram, with each token being delimited by a space. They then
split the source code into 21 token windows, which are compared
against the model for their cross-entropy. The cross-entropy is then
converted to a specific value for each token, and the token with
the highest value is considered the error. Finally, the n-gram model

https://github.com/features/copilot

ITiCSE 2023, July 8–12, 2023, Turku, Finland Marcus Messer, Neil C. C. Brown, Michael Kölling, and Miaojing Shi

attempted to delete or insert a token before or substitute the token
to repair the source code.

For their LSTM model, they converted each source file into a
vector and then converted it to a one-hot encoded matrix. In a one-
hot encoding, precisely one item in each column has the value one;
the rest of the values in the column are zero. Using this one-hot
encoding, they train an LSTM to map the contexts to categorical
distributions of adjacent tokens. The final model was then used to
find the likely error location and suggest an edit.

When comparing which method can suggest a true fix as its
first suggestion, the abstract 10-gram model, which only requires
the correct operation, location and token type, outperforms the
10-gram concrete model, which additionally requires the fix to
produce the exact identifier or literal, and the LSTM, even when
the hyperparameters are fine-tuned.

Even though the traditional approach gave better results than
the neural network-based technique in this instance, many of the
included articles opted for the neural network-based approach.
The prevalence of neural network-based techniques as the primary
method could be due to how successful these techniques have
been when applied to source code in domains other than computer
science education. Some tools, such as GitHub CoPilot, developed
for other software engineering domains, have become popular tools
to aid developers. Thus, authors may have adapted the ideas of
using these neural network-based language models to apply to the
computer science education domain.

5.4 Evaluation
5.4.1 Techniques. Most of our included papers opted to evaluate
theirmodel’s accuracy, confirming howwell they predict the desired
grade or feedback. However, few compare the model’s predictions
with a human grader manually labelling the same dataset, even
if the data used was taken from internal assignments that would
typically be manually graded. Although some articles evaluated
their models against internal datasets, others used open datasets,
such as GitHub [27, 32], Blackbox [32], and code.org [29, 39]. While
comparing to a dataset graded by humans offers a realistic baseline,
manual annotation requires a substantial time commitment, may
not always yield accurate results and requires ethical approval to
use students’ actual grades.

Furthermore, few papers conducted a case study to verify how
well their tool performs in a real-world scenario with actual end-
users, both students and instructors. Validating the tool’s perfor-
mance in a real-world setting can aid researchers by receiving
feedback on the quality of the grades or feedback given to students,
the overall experience of using the tool, or how to improve the
functionality of the tool.

5.4.2 Performance. Typically, the implemented models performed
well, with those using accuracy metrics predicting the correct grade
or feedback with at least 70%. Some papers report an accuracy
of approximately 95% for specific problems within their dataset.
For those articles that compared their models to other baseline
models, they typically improved the performance. Those articles
that ran case studies generally saw good results, either by helping
the students resolve errors faster or performing better than unit
test-based tools.

6 CONCLUSION
In this meta-analysis, we categorised the included approaches based
on the fundamental programming skills graded, the ML paradigm
and the categories implemented and investigated their evaluation
techniques and how they performed.

We discovered that most ML-based tools were primarily con-
cerned with functional or syntactic correctness. Few papers pro-
posed methods to grade maintainability or readability and no arti-
cles that scored documentation. It seems like a squandered opportu-
nity to grade correctness usingML rather thanmaintainability, read-
ability, or documentation, as correctness grading using dynamic
or static techniques is widely covered. However, auto-grading cor-
rectness using ML could reduce the effort by instructors, as they
would not have to implement a comprehensive test suite, and the
ML approaches typically do not need to be revised when a new
version of the assignment is released.

Most of the included papers implemented a supervised model,
with most using a neural network-based model and fewer using
traditional models. Few implemented unsupervised techniques, and
only one paper opted for a deep reinforcement learning approach.
While supervised approaches can provide better results, they re-
quire a large set of labelled data, which can be time-consuming
to annotate. Additionally, unsupervised approaches have seen re-
cent success in other software engineering domains, such as code
generation.

The evaluation of these models primarily focused on their predic-
tions’ accuracy, in which most models performed with an accuracy
of at least 70%, improving the accuracy compared to baseline mod-
els and significantly improving on classical approaches, such as
unit testing. Additionally, some papers compared the models to a
human-graded benchmark, while others performed a case study to
validate their performance in a real-world scenario.

6.1 Future Work
Most of the current research is into applying ML to automated
grading and feedback, and potential future work could include pro-
ducing ML-based tools to grade readability, maintainability and
documentation. We have nearly concluded our systematic literature
review and are in the final drafting stage before submission to a
journal. In the future, we plan to extend this work by conducting
a forward snowball search of the papers included in this article
and by extending our search to include commercially available
tools, including large language models, such as Codex and GPT-4.
Thus analysing recent developments in applying ML to automated
grading and feedback and how ML is applied to accelerate profes-
sional software engineering. Furthermore, we plan to evaluate these
approaches against a shared dataset to compare their performance.

REFERENCES
[1] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit

Gulwani. 2018. Compilation error repair: For the student programs, from the
student programs. Proceedings - International Conference on Software Engineering
18 (5 2018), 78–87. https://doi.org/10.1145/3183377.3183383

[2] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare.
2019. Targeted example generation for compilation errors. Proceedings - 2019
34th IEEE/ACM International Conference on Automated Software Engineering, ASE
2019 34 (11 2019), 327–338. https://doi.org/10.1109/ASE.2019.00039

[3] Kirsti M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches
for Programming Assignments. Computer science education 15, 2 (2005), 83–102.

https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1109/ASE.2019.00039

Machine Learning-Based Automated Grading and Feedback Tools for Programming: A Meta-Analysis ITiCSE 2023, July 8–12, 2023, Turku, Finland

https://doi.org/10.1080/08993400500150747
[4] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 281–293.
https://doi.org/10.1145/2635868.2635883

[5] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-Symbolic Program
Corrector for Introductory ProgrammingAssignments. Proceedings - International
Conference on Software Engineering 2018-January (2018), 60–70. https://doi.org/
10.1145/3180155.3180219

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating Large Language Models Trained on Code.

[7] Shyam R. Chidamber and Chris F. Kemerer. 1994. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering 20 (1994), 476–493.
Issue 6. https://doi.org/10.1109/32.295895

[8] Colin B. Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and
Neel Sundaresan. 2020. PyMT5: multi-mode translation of natural language and
Python code with transformers. , 9052–9065 pages.

[9] Gilbert Cruz, Jacob Jones, Meagan Morrow, Andres Gonzalez, and Bruce Gooch.
2017. An AI system for coaching novice programmers. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 10296 LNCS (2017), 12–21. https://doi.org/10.1007/978-3-319-
58515-4_2/FIGURES/3

[10] Melissa Day, Manohara Rao Penumala, and Javier Gonzalez-Sanchez. 2019. An-
nete: An Intelligent Tutoring Companion Embedded into the Eclipse IDE. In
2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI).
IEEE, New York, NY, USA, 71–80. https://doi.org/10.1109/CogMI48466.2019.00018

[11] Yu Dong, Jingyang Hou, and Xuesong Lu. 2020. An Intelligent Online Judge
System for Programming Training. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12114 LNCS (2020), 785–789. https://doi.org/10.1007/978-3-030-59419-0_57/
FIGURES/3

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, et al. 2020.
CodeBERT: A Pre-TrainedModel for Programming and Natural Languages. https:
//doi.org/10.48550/ARXIV.2002.08155

[13] Lucas Busatta Galhardi and Jacques Duílio Brancher. 2018. Machine learning
approach for automatic short answer grading: A systematic review. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 11238 LNAI (2018), 380–391. https://doi.org/10.
1007/978-3-030-03928-8_31/TABLES/3

[14] Elena L. Glassman, Rishabh Singh, and Robert C.Miller. 2014. Feature Engineering
for Clustering Student Solutions. In Proceedings of the First ACM Conference on
Learning Scale Conference (Atlanta, Georgia, USA) (LS ’14). Association for
Computing Machinery, New York, NY, USA, 171–172. https://doi.org/10.1145/
2556325.2567865

[15] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Deep Reinforcement
Learning for Syntactic Error Repair in Student Programs. Proceedings of the
AAAI Conference on Artificial Intelligence 33 (7 2019), 930–937. Issue 01. https:
//doi.org/10.1609/AAAI.V33I01.3301930

[16] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Neural Attribution for
Semantic Bug-Localization in Student Programs. In Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. Proceedings of the AAAI
Conference on Artificial Intelligence 31 (2 2017), 1345–1351. Issue 1. https://doi.
org/10.1609/AAAI.V31I1.10742

[18] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (oct 1969), 576–580. https://doi.org/10.1145/363235.363259

[19] Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3 (10 1960), 528–529. Issue 10. https://doi.org/10.1145/367415.367422

[20] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education (TOCE) 19 (9 2018). Issue 1. https://doi.
org/10.1145/3231711

[21] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in Model-
ing. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering Education and Training (Seoul, South Korea)
(ICSE-SEET ’20). Association for Computing Machinery, New York, NY, USA,
12–22. https://doi.org/10.1145/3377814.3381701

[22] Timotej Lazar, Martin Možina, and Ivan Bratko. 2017. Automatic extraction of
AST patterns for debugging student programs. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 10331 LNAI (2017), 162–174. https://doi.org/10.1007/978-3-319-
61425-0_14/TABLES/1

[23] Yi Li, Shaohua Wang, and Tien Nguyen. 2021. A Context-Based Automated
Approach for Method Name Consistency Checking and Suggestion. In 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
New York, NY, USA, 574–586. https://doi.org/10.1109/ICSE43902.2021.00060

[24] Artyom Lobanov, Timofey Bryksin, and Alexey Shpilman. 2019. Automatic
classification of error types in solutions to programming assignments at online
learning platform. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11626 LNAI
(2019), 174–178. https://doi.org/10.1007/978-3-030-23207-8_33/FIGURES/2

[25] Thomas J. Mccabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2 (1976), 308–320. Issue 4. https://doi.org/10.1109/TSE.1976.
233837

[26] Eerik Muuli, Kaspar Papli, Eno T onisson, Marina Lepp, Tauno Palts, et al. 2017.
Automatic assessment of programming assignments using image recognition.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10474 LNCS (2017), 153–163.
https://doi.org/10.1007/978-3-319-66610-5_12/TABLES/1

[27] Ramez Nabil, Nour Eldeen Mohamed, Ahmed Mahdy, Khaled Nader, Shereen
Essam, et al. 2021. EvalSeer: An Intelligent Gamified System for Programming
Assignments Assessment. In 2021 International Mobile, Intelligent, and Ubiquitous
Computing Conference (MIUCC). IEEE, New York, NY, USA, 235–242. https:
//doi.org/10.1109/MIUCC52538.2021.9447629

[28] José Carlos Paiva, Paulo Leal, Álvaro Figueira, and Álvaro 2022 Figueira. 2022.
Automated Assessment in Computer Science Education: A State-of-the-Art Re-
view. ACM Transactions on Computing Education (TOCE) 22 (6 2022), 1–40. Issue
3. https://doi.org/10.1145/3513140

[29] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, et al. 2015. Learning Program Embeddings to Propagate Feedback on
Student Code. In Proceedings of the 32nd International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 37), Francis Bach and
David Blei (Eds.). PMLR, Lille, France, 1093–1102.

[30] Dadi Ramesh and Suresh Kumar Sanampudi. 2022. An automated essay scoring
systems: a systematic literature review. Artificial Intelligence Review 55 (3 2022),
2495–2527. Issue 3. https://doi.org/10.1007/S10462-021-10068-2/TABLES/9

[31] Stuart J Russell. 2010. Artificial intelligence a modern approach. Pearson Education,
Inc., NJ, USA. 694–695 pages.

[32] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,
and Jose Nelson Amaral. 2018. Syntax and sensibility: Using language models to
detect and correct syntax errors. 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018 - Proceedings 2018-March (4
2018), 311–322. https://doi.org/10.1109/SANER.2018.8330219

[33] Gursimran Singh, Shashank Srikant, and Varun Aggarwal. 2016. Question in-
dependent grading using machine learning: The case of computer program
grading. Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining 13-17-August-2016 (8 2016), 263–272. https:
//doi.org/10.1145/2939672.2939696

[34] Fábio Rezende De Souza, Francisco De Assis Zampirolli, and Guiou Kobayashi.
2019. Convolutional neural network applied to code assignment grading. CSEDU
2019 - Proceedings of the 11th International Conference on Computer Supported
Education 1 (2019), 62–69. https://doi.org/10.5220/0007711000620069

[35] Shashank Srikant and Varun Aggarwal. 2014. A System to Grade Computer
Programming Skills Using Machine Learning. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (New
York, New York, USA) (KDD ’14). Association for Computing Machinery, New
York, NY, USA, 1887–1896. https://doi.org/10.1145/2623330.2623377

[36] Arjun Verma, Prateksha Udhayanan, Rahul Murali Shankar, Nikhila KN, and
Sujit Kumar Chakrabarti. 2021. Source-Code Similarity Measurement: Syn-
tax Tree Fingerprinting for Automated Evaluation. In The First International
Conference on AI-ML-Systems (Bangalore, India) (AIMLSystems 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 8, 7 pages.
https://doi.org/10.1145/3486001.3486228

[37] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Se-
mantic Representations of Identifier Names in Source Code. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, New York,
NY, USA, 562–573. https://doi.org/10.1109/ICSE43902.2021.00059

[38] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (London, Eng-
land, United Kingdom) (EASE ’14). Association for Computing Machinery, New
York, NY, USA, Article 38, 10 pages. https://doi.org/10.1145/2601248.2601268

[39] Mike Wu, Milan Mosse, Noah Goodman, and Chris Piech. 2019. Zero Shot
Learning for Code Education: Rubric Sampling with Deep Learning Inference.
Proceedings of the AAAI Conference on Artificial Intelligence 33 (7 2019), 782–790.
Issue 01. https://doi.org/10.1609/AAAI.V33I01.3301782

[40] Xiaoming Zhai, Yue Yin, James W. Pellegrino, Kevin C. Haudek, and Lehong
Shi. 2020. Applying machine learning in science assessment: a systematic re-
view. Studies in Science Education 56, 1 (2020), 111–151. https://doi.org/10.1080/
03057267.2020.1735757

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/3180155.3180219
https://doi.org/10.1145/3180155.3180219
https://doi.org/10.1109/32.295895
https://doi.org/10.1007/978-3-319-58515-4_2/FIGURES/3
https://doi.org/10.1007/978-3-319-58515-4_2/FIGURES/3
https://doi.org/10.1109/CogMI48466.2019.00018
https://doi.org/10.1007/978-3-030-59419-0_57/FIGURES/3
https://doi.org/10.1007/978-3-030-59419-0_57/FIGURES/3
https://doi.org/10.48550/ARXIV.2002.08155
https://doi.org/10.48550/ARXIV.2002.08155
https://doi.org/10.1007/978-3-030-03928-8_31/TABLES/3
https://doi.org/10.1007/978-3-030-03928-8_31/TABLES/3
https://doi.org/10.1145/2556325.2567865
https://doi.org/10.1145/2556325.2567865
https://doi.org/10.1609/AAAI.V33I01.3301930
https://doi.org/10.1609/AAAI.V33I01.3301930
https://doi.org/10.1609/AAAI.V31I1.10742
https://doi.org/10.1609/AAAI.V31I1.10742
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3377814.3381701
https://doi.org/10.1007/978-3-319-61425-0_14/TABLES/1
https://doi.org/10.1007/978-3-319-61425-0_14/TABLES/1
https://doi.org/10.1109/ICSE43902.2021.00060
https://doi.org/10.1007/978-3-030-23207-8_33/FIGURES/2
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1007/978-3-319-66610-5_12/TABLES/1
https://doi.org/10.1109/MIUCC52538.2021.9447629
https://doi.org/10.1109/MIUCC52538.2021.9447629
https://doi.org/10.1145/3513140
https://doi.org/10.1007/S10462-021-10068-2/TABLES/9
https://doi.org/10.1109/SANER.2018.8330219
https://doi.org/10.1145/2939672.2939696
https://doi.org/10.1145/2939672.2939696
https://doi.org/10.5220/0007711000620069
https://doi.org/10.1145/2623330.2623377
https://doi.org/10.1145/3486001.3486228
https://doi.org/10.1109/ICSE43902.2021.00059
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1609/AAAI.V33I01.3301782
https://doi.org/10.1080/03057267.2020.1735757
https://doi.org/10.1080/03057267.2020.1735757

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	5.1 Skills Graded
	5.2 Paradigms Implemented
	5.3 Categories Implemented
	5.4 Evaluation

	6 Conclusion
	6.1 Future Work

	References

