
Frame-Based Editing: Combining the Best of
Blocks and Text Programming

Neil C. C. Brown
University of Kent

Canterbury, Kent, UK
nccb@kent.ac.uk

Amjad Altadmri
University of Kent

Canterbury, Kent, UK
aa803@kent.ac.uk

Michael Kölling
University of Kent

Canterbury, Kent, UK
mik@kent.ac.uk

Abstract—Editing program code as text has several major
weaknesses: syntax errors (such as mismatched braces) interrupt
programmer flow and make automated tool support harder,
boilerplate code templates have to be typed out, and programmers
are responsible for layout. These issues have been known about
for decades, but early attempts to address these issues, in the
form of structured editors, produced unwieldy, hard-to-use tools
which failed to catch on. Recently, however, block-based editors
in education like Scratch and Snap! have demonstrated that
modern graphical structured editors can provide great benefits
for programming novices, including very young age groups. These
editors become cumbersome for more advanced users, due to
their unbending focus on mouse input for block creation and
manipulation, and poor scaling of navigation and manipulation
facilities to larger programs. Thus, after a few years, learners
tend to move from Scratch to text-based editing.

In this paper, we present the design and implementation of
a novel way to edit programs: frame-based editing. Frame-based
editing improves text-based editing by incorporating techniques
from block-based editing, and thus provides a suitable follow-
on from tools like Scratch. Frame-based editing retains the
easy navigation and clearer display of textual code to support
manipulation of complex programs, but fuses this with some of
the structured editing capabilities that block programming has
shown to be viable. The resulting system combines the advantages
of text and structured blocks. Preliminary experiments suggest
that frame-based editing enables faster program entry than
blocks or text, while resulting in fewer syntax errors. We believe
it provides an interesting future direction for program editing for
learners at all levels of proficiency.

I. INTRODUCTION

Most professional programming is done in languages edited
and stored as plain text. This representation causes many
needless issues and invites unnecessary errors. Fully typing
out statements is unnecessary work for a programmer, simple
spelling errors in program keywords or in the syntax of
control structures hold up a programmer’s flow, writers have
to arrange layout as well as program structure, changes in
formatting (such as bracket placement, indentation or the
formatting of continuation lines) are registered as program
changes in version control systems, and many other related
productivity issues. These issues are especially problematic for
beginners, who must memorise control structure syntax and
manage indentation while also trying to learn the semantics of
programming.

Most IDEs attempt to help with these problems by offering
functionality for abbreviations, shortcuts, auto-completion and

auto-indentation. However, the support that text-based IDEs
can provide is necessarily limited: Indentation may still be
invalidated after the fact, keywords and identifiers altered,
single braces deleted leaving partial control structures present,
etc. Because of the representation of the program as text,
the ability of IDEs to ensure the absence of many types of
error is limited. When manipulating code by selecting multi-
line chunks, it is easy to accidentally miss or include extra
braces or extra lines, as single brace characters are small click
targets [1]. Professionals are typically able to fix these errors
reasonably quickly, but they still interrupt workflow. When
these syntax errors are present, the IDE must use complicated
parsing algorithms to try to recover from such errors—but there
is no need for these errors to be possible in the first place.

Block-based programming languages, such as Scratch [2],
Alice [3], or AppInventor [4], have shown that representing
code structurally can be done in a usable manner in modern
GUI systems, eliminating many of these needless problems.
Scratch has no braces to place, and no indentation to decide
upon. It will never include half a control structure. However,
block-based programming systems are too cumbersome for
professional use: they are designed for small programs. Large
pieces of code are hard to read, and the purely mouse-based
drag-and-drop interactions are too laborious for creating and
editing large programs. This makes these editors unattractive
to professional developers, despite their advantages in avoiding
many errors.

In this paper, we introduce frame-based editing: a new
editing paradigm that combines the best features of block-
and text-based programming. Frame-based editing uses the
graphical structure of block-based programming, but supports
keyboard entry for all editing tasks. It combines the improved
display of scope from blocks-based editing with a faster entry
of program constructs and avoidance of many syntax errors.
However, it is not “blocks all the way down”; expressions are
entered textually, while retaining a simple structured represen-
tation and display, to allow for faster entry than in block-based
editing, but still avoid most of the syntax errors which text-
based editing allows in expressions.

In this paper we give a detailed description of frame-based
editing (sections III–X) its advantages for usability and in
education, before we present promising usability results from
early versions of our prototype implementation (section XI).



II. RELATED WORK

Prior related work can be broadly split into two categories:
older work in the 1980s on structured editing, and more recent
work in the 2000s on block-based editing. We will tackle each
category in turn.

A. Structured Editing

The insight that plain text is not the optimal representation
for source code is not new. The idea of directly editing a pro-
gram’s structure (i.e. its abstract syntax tree, AST) was behind
the structured editing movement in the 1980s, with the Cornell
Program Synthesiser a notable early example [5]. However,
structured editors proved too cumbersome and restrictive in
practice and never caught on [6]. It is worth remembering,
however, that this work on structured editors was performed
at the very beginning of the Graphical User Interface (GUI) era
when graphical displays and mice were only just catching on,
performance was always a difficult issue, and our knowledge
of Human-Computer Interaction (HCI) was very limited.

B. Block-based Editing

Block-based editing clearly shares a similar model with
structure editing: blocks are graphical AST elements which
can be snapped together into trees. We believe one crucial
difference between structure editing and block-based editing
is that the former was generally bound to a rigid text-based
display, with obtuse keyboard support – in contrast, block-
based editing replaced this with a more flexible graphical
display and mouse-centric interactions which made it easier
to understand easier to access for beginners. This advantage
of blocks partly arose from the developments in graphical and
interface capabilities that occurred in general computing in the
1990s and 2000s. Thus, when Scratch [2] was developed in
the 2000s it was able to make good use of high-resolution
full-colour displays, drag-and-drop mouse interactions, and
also faster processors. Although not directly descended from
structured editors, block-based editors are clearly similar in
principle, but have demonstrated that such editors can be
hugely successful in programming education, if designed well.

C. Frame-based Editing

Like Scratch, frame-based editing is a spiritual descendant
of structured editing. Frame-based editing explicitly borrows
from blocks-based editing, but steers back closer to structured
editors, armed with the similar advantages of developing
on modern-day high-powered GUI systems with improved
knowledge of HCI and interface design.

A previous paper has been published on a much earlier
prototype of this work [1], and another paper has described the
issues involved in the transition between blocks- and text-based
editing, with a short description of how frame-based editing
may aid the transition [7]. In this paper we provide a fuller
description of frame-based editing in its own right, and discuss
how some of its features are important for programming
education.

Fig. 1. The frame cursor (horizontal blue bar) in the frame-based editor

III. FRAME-BASED EDITING

Figures 1 and 2 show programs in the frame-based editing
interface. The editor supports a language called Stride, a Java-
like language used in our educational environment Green-
foot [8]. In this section, we discuss the most important features
of our frame-based editor implementation.

Each frame is entered by pressing a single key on the
keyboard and—as with blocks—is indivisible. There are no
curly braces to mismatch; an if-frame is always closed, and
always has a condition present. Syntax errors may be present
in the condition or within child frames, but no errors can occur
in the structure of the if-frame.

Frames are comprised of unmodifiable decoration (such as
the “if” caption in an if statement), frame slots which contain
further frames (e.g. the body of the if statement), and text slots,
which contain traditional program text (e.g. the condition of
the if statement). Many frames omit one or more of these; for
example, a method-call frame only has a text slot in which to
type the method name, and optional text slots for parameters,
but no nested frame slots.

To support keyboard entry and editing of frames, the editor
has a frame cursor: the horizontal blue bar in Figure 1. This
frame cursor is present when focus is in a frame slot, and it
behaves in a manner similar to a standard text cursor. It can be
moved with the arrow keys and can be used to select frames.
Single-key shortcuts are used to enter frames at the position
of the frame cursor. When keyboard focus is in a text slot, a
traditional text cursor is shown. Whenever the editor window
has focus, either a frame cursor or a text cursor is displayed,
but never both.

IV. FRAME SLOTS

Frame slots are typically the body of a program construct:
the body of an if-statement, a while loop, or a method
declaration. Try/catch frames have a frame slot for the body
of the try, and then another for each catch clause.

Frame slots are aware of their context and editing com-
mands are context sensitive. The body of a class, for instance,
can hold only methods, constructors and variables (fields). It is
not possible to enter frames that are disallowed by the language
grammar; command keys for illegal frames are ignored and
any attempt to drag or paste an illegal frame has no effect.
Thus errors such as entering program code outside a method
body—indicating a misconception of a novice or a slip by a
proficient programmer—are prevented.



Fig. 2. Frame-based editor interface, integrated into the Greenfoot system

V. THE FRAME CURSOR

The frame cursor (shown in figure 1) is always inside a
frame slot. It can be located at the top of the frame slot
(including an empty frame slot), or immediately after any
frame inside a frame slot. It can be positioned between frames
with a mouse click or by using keys to move up or down. By
default, up/down arrows move line by line, entering or leaving
nested frames in the process. However, using the arrow keys
with a modifier key moves the frame cursor at its current scope
level, jumping over compound frames in one step. This enables
quick navigation. For example, when the cursor is outside a
method, this movement navigates at the method level, jumping
to each method in turn with a single movement command.

Selection can be performed by dragging the mouse cursor
from the current frame cursor to another frame cursor position,
by shift-clicking in the same manner, or by using the shift mod-
ifier while pressing up/down. Selection is always contained
within a single frame slot. For example, should a selection
start in the body of an if statement, it always ends within the
same if-statement. This means that is is not possible to select
half a construct; a part of a while loop cannot be selected
without selecting its entire extent.

The movement and selection behaviour allows code to be
navigated and selected more easily: movement progresses to
relevant locations more quickly (positions within, for example,
a language keyword or a control structure’s syntax decoration

are no longer target locations for a cursor) and code selection
extends in meaningful chunks with less cursor movement
efforts and larger mouse targets.

VI. FRAME MANIPULATION

Frames, such as if-statements, are inserted by pressing
a single key (‘i’ for if-statements) when the frame cursor
has focus. The syntactic structure—tedious boilerplate in text-
based languages—is thus “free”. The single-key insertion is
not only preferable to traditional typing of constructs, but
is also faster than code completion or abbreviation systems
in modern IDEs (which usually require at least Ctrl-Space,
a few keypresses, and Enter to be typed). Some frames can
be modified after entry: an if-statement, for example, can be
extended to obtain an else clause by using a single extension
keypress ‘e’ when the frame cursor is located within the frame
to be extended.

Frames are first class citizens in the GUI structure of
the editor’s interface. They are mouse targets and can easily
be dragged from one position to another, without requiring
prior selection, just like blocks in block-based systems. (In
fact, the drop targets for blocks in block-based programming
correspond to frame cursor locations in frame-based editing.)
Again, this provides faster and easier editing gestures for very
common operations than those available in traditional text
editors. Similarly, multi-frame selections can also be dragged
and dropped at new locations. The visual appearance of the



Fig. 3. Dragging a frame, indicating an invalid drop target (left) and a valid
drop target (right).

frame cursor during a drag gesture clearly identifies legal and
illegal drop targets for frames, as shown in Figure 3. The
dragging of custom selections improves on existing block-
based systems; previous work [1] found that Scratch’s drag
and drop manipulation was less effective than desirable due
to a lack of expressive precision over which blocks the user
wants to manipulate.

Right-clicking on a frame displays a context menu offering
options to delete, cut, and copy, as well as several others.
Thus, deleting a method requires two clicks (or with the
keyboard, pressing the delete/backspace key above/below the
method)—an example of a much easier interaction than in
text-based editing. In a text editor, selecting exactly one
structure is generally more awkward, requires more time due
to smaller mouse targets (an example of Fitts’ Law [9]), and
is sensitive to subtle selection details: whether or not, for
example, a trailing newline character or parts of whitespace
surrounding the construct is included in the selection will
affect its presentation at its drop location, and may require
the programmer to adjust layout at the origin of a cut/move.
In frame-based programming, the selection will always be
entirety of the desired frame(s), and layout is automatically
guaranteed to be consistent at both the origin and the target
of a moved frame. The programmer does not need to consider
line breaks or indentation. While the gain may seem minor at
first, it is significant: it not only reduces the need for tedious
fine-grain editing, but also removes a cognitive task (ensuring
consistent layout) that can easily be automated, freeing the
programmer to concentrate on more important issues.

In addition to these interactions, the editor also supports
“wrapping” shortcuts: selecting existing frames and then press-
ing, for example, the ‘i’ key surrounds the frames with an if-
statement and places keyboard focus in the condition slot for
editing. Thus frames can easily be wrapped in a parent frame
(e.g. if-statements, loops, try/catch) with just a single key once
they have been selected.

Another common edit is to temporarily disable a code
segment. In classic text editors, this is achieved by “comment-
ing out” the code in question. This mechanism represents a
convenient abuse of the comment construct; the purpose here
is not to provide a comment, but something entirely different.
The reason a comment symbol (or similarly, a pre-processor
directive) is used is merely the lack of a better way. As a
result, actual text comments and disabled code segments are
visually identical in their presentation in text programming.
In frame-based editing, frames can be disabled via an explicit
function in the frame’s context menu (or by using a keyboard
shortcut). The appearance of disabled code is clearly distinct

from comments (it is shown blurred, see Figure 4); and as
one would expect, it is not compiled and has no effect on the
program’s behaviour.

VII. TEXT SLOTS

Frame-based editing makes use of three different kinds of
text slots. Some slots, used when there is a fixed set of options,
such as the access specifier for a method, are choice slots.
Other slots, such as the type and name slots in a variable
declaration, or the name of a method, are identifier slots.
The third kind, such as the condition of an if-statement, are
structured expression slots. We discuss each of these below.

A. Choice slots

Choice slots behave similarly to combo-boxes in many GUI
toolkits: they offer a fixed (usually small) set of values for
entry, and one value is always selected. Choice slots in the
Stride editor offer selection with the mouse as well as textual
entry with optional automatic completion. An example use of
choice slots is for the visibility modifiers of fields and methods:
only public, protected and private are available and the choice
is unique after typing a few characters.

B. Identifier slots

An identifier slot is similar to a standard GUI text field with
special behaviour for a set of keys. Users type the contents;
a variable or method name slot allows most text to be typed.
Invalid characters, such as ‘!’, are ignored. However, some
invalid names, such as keywords, are still possible, but a syntax
error will be displayed for that slot.

Standard interactions are available for text fields: selection,
copy/paste, deletion, etc. The selection cannot extend beyond
the text slot. Cursor keys can be used to move the cursor back
and forth as usual, but any attempt to go left/right beyond the
extent of the slot will move to an adjacent slot. For example,
in a text slot for a variable name (e.g. the foo variable in
Figure 4), going left from the start will move focus to the last
cursor position of the preceding variable type (the int type in
the figure), while going right from the end will move focus to
the frame cursor immediately after the variable frame.

Text slots are aware of their role and offer code completion
accordingly. Type slots offer types (int, String, etc). Name slots
in method declarations offer the names of methods from the
parent class which could be overridden. Type slots in catch
clauses of try/catch frames offer only those types which are
subclasses of Throwable (the only valid catchable types in
Java). Variable declaration name slots offer no code comple-
tion. Thus, frame slots easily offer contextual code completion
based on an a priori known role. This contrasts with text-based
IDEs, which must perform potentially error-prone parsing of
partially-written code to offer the same support.

C. Structured expression slots

A significant difference between block-based and frame-
based editing is the extent to which the system relies on blocks
for the definition of subexpressions. In block-based systems,
all expressions are entered as blocks. An addition expression,
for example, has its dedicated block which must be dragged



Fig. 4. Disabled frames, such as the if-statement here, are blurred to reflect
their status.

into the code structure, and in some systems literals also have
to be defined and used as blocks. These interactions are slow
(as confirmed by Koitz and Slany [10]), and the interaction
overhead results in a little gain.

In contrast, our frame-editor is able to mix frames and
structured text. Expressions are entered textually and converted
on the fly into structured expressions. Typing a number and a
plus symbol into an expression slot, for example, recognises
the operator and restructures the expression into an operation
with two text fields on either side of the plus operator. The
operator itself is not part of either text field.

Typing an opening parenthesis inserts the closing equiva-
lent as well. While this is also common in many existing text
editors, the frame editor maintains a stronger link: the bracket
pair remains linked in the editor; deleting one parenthesis
will automatically remove the other as well, and selecting
subexpressions will always include both or neither of the
pair. Moreover, explicitly typing the closing parenthesis will
overtype the automatically generated one, moving the cursor
behind it. This mimics the conceptual model of typing text
which professional text-based programmers are used to.

The ability to enter expressions as structured text avoids
one of the obvious shortcomings of block-based editors: It
combines the avoidance of some errors with the ease and flex-
ibility of text entry, avoiding the mouse-interaction overhead
where there is little to gain from using blocks.

An advantage of structured expressions over pure text is the
opportunity for better presentation. When the user enters an ex-
pression, the editor automatically uses semantically meaningful
spacing: higher precedence operators are surrounded with less
space, while lower precedence operators are spaced a little
more widely. This improves readability of the program text
without any additional effort on the programmer’s part.

VIII. ERROR DISPLAY

We display errors on frame slots using a red wavy un-
derline, recognisable from mis-spellings in word processing
systems and error displays in several other professional IDEs.
The text of the error is shown in a pop-up when the text slot
is focused. The vast majority of errors occur within a text
slot—unknown types, undeclared variables, type/parameter
mismatches, blank slots, and so on. There are very few errors
that concern the structure of a frame itself; by design, frames
are usually only invalid if one of their contained text slots
is invalid or empty. The primary exception to this are errors
such as unreachable code, or errors such as invalid overrides
or duplicate parameters on methods. Even then, the error

location can often be narrowed to a specific text slot (such
as displaying method errors on the method name). Wherever
possible, we display errors on a text slot as this produces a
more localised error; otherwise, in very few cases, an entire
frame is highlighted as erroneous.

If an error has an obvious common fix, we display a list
of suggested fixes. For example, if a variable is unknown, but
there exists a variable with very similar spelling, we offer to
correct the use to match the similar declaration. Or if a type
is unknown, but there is a type with that name available in a
commonly-used package, we offer to add an import for this
type.

IX. EASY CORRECTION

One problem with many of the old structured editors was
not only their usability, but also the difficulty in reversing
mistakes while learning the editor. We provide several mecha-
nisms to fix errors. One is a global undo mechanism, allowing
users to undo their changes in a standard last-in first-out stack.
However, Ko et al. [11] found that programmers don’t tend to
use global undo, because they want to preserve more recent
changes, and cannot do this while undoing older changes. To
solve this problem, we provide a local undo mechanism which
allows changes to be undone for a specific frame, even if more
recent changes were performed since on other frames.

We also provide an easy way to correct accidental key-
presses. For example, if a user wants to invoke a method starts
with ‘e’ in an if-block and starts writing the name directly, that
will add an ‘else’ clause containing all the frames that were in
the if-block and under the frame cursor. To fix this, the user
needs only to press Escape or Backspace to reverse the effect.
The same applies when a user presses a wrong command to
insert any type of frame: Escape or Backspace reverses the
command. Another example is overtyping. As mentioned in
section VII-C, to increase usability and maintain the muscle
memory that some text-programmers develop, symbols that
are automatically inserted to maintain correct syntax, such as
closing parentheses, could be overtyped: If the user types a
bracket where one already exists, the cursor is moved beyond
the bracket, rather than inserting a new bracket.

X. EDUCATIONAL ADVANTAGES

In the previous sections we have explained the general
design of frame-based programming. Our frame-based editor
is deliberately designed for education, and brings with it the
advantages of blocks, along with several further advantages:

• Reduced syntax: The design of frame-based editing
prevents swathes of syntax errors. It is impossible to
mismatch brackets or to leave scopes unterminated.
Constructs cannot appear in invalid locations: state-
ments cannot appear outside methods, methods cannot
be put within statements, and so on.

• Recognition over recall: Programming in text re-
quires memorising the syntax for each construct: a
switch statement is the keyword switch, followed by
round brackets, then curly brackets, in which you write
the case keyword then the value then a colon, and
so on. Our cheat sheet, like palettes in block-based



Fig. 5. Cheat Sheet.

editing systems, supports recognition of program state-
ments; Figure 5. The command key ‘s’ produces a
switch statement, as shown in the cheat sheet. Less
memorisation will be required by learners, freeing
up cognitive load capacity to concentrate on more
important issues.

• Same keystrokes: Those who continue to study pro-
gramming will likely transition from frame-based edit-
ing into text-based languages. While our expression
slots are structured, they can be entered with exactly
the same keystrokes as in a text editor. This will ease
any later transition into text-based languages.

• Inheritance display: Students have several common
struggles with object-orientation. One is understanding
the difference between classes and objects, which is
already dealt with in Greenfoot’s interface (classes
are the editable code on the right; objects are the
items with images which have active behaviour on the
left). Another is understanding the mechanics of inher-
itance. Students program their own Actor subclasses,
calling Actor’s methods such as move and turn, but
they often struggle to understand where these methods
“come from”. In Stride, the editor has a fold-out
display of methods inherited from each superclass, in
order to help clarify this; Figure 6. Unlike other editors
which only display the code written in that subclass,
Stride displays accessible code from superclasses, to
aid learning about inheritance.

• Prompts: When learning to program, students can
often feel lost when writing program code. We try
to structure the student’s code entry as much as is
reasonable. When the frame cursor is focused, the
cheat sheet shows available options. When a blank
frame is inserted, its empty slots are shown with a hint
(e.g. “method-name” for method call frames). When
a method call is specified, hints are shown for the

Fig. 6. List of inherited methods.

Task Scratch Alice NetBeans Frames
Insertion 4.9 6.6 5.1 1.6
Modification 5.6 7.1 5.5 5.0
Deletion 5.4 2.6 7.8 2.4
Movement 5.5 3.1 6.0 4.8
Replacement 9.8 8.9 5.1 2.3

TABLE I. MEAN TIMES IN SECONDS (1 D.P.) FOR VARIOUS PROGRAM
MANIPULATION TASK TYPES [1]. LOWER TIMES ARE BETTER, BEST IN

EACH ROW IS HIGHLIGHTED IN BOLD.

names of the parameters. In this way, we try to guide
students with what needs to be written next, without
ever constraining what they can enter.

XI. PRELIMINARY USABILITY RESULTS

A study by McKay and Kölling [1] investigated editing per-
formance of an early prototype of this work in comparison with
a variety of other programming systems. The study compared
cognitive models of different program modifications (insertion,
modification, deletion, movement and replacement) in a proto-
type frame-based editor with various other systems, including
Scratch, Alice, and NetBeans. Cognitive modelling computes
a measure of task time by recording and analysing keystroke
level interactions (such as key presses and mouse clicks) as
well as “mental” operators, such as eye movement and reading
time. The study was performed using CogTool [12], a software
system that automates the recording and analysis of interaction
sessions. The prototype frame-based editor was found to be
the fastest in four out of five categories. Selected results are
reproduced here in Table I.

XII. CONCLUSION

In this paper, we have given an overview of frame-based
editing, a new interaction paradigm intended to combine
the best features of text-based programming and block-based
programming. We achieve the easy manipulation of code
structures and error avoidance of block-based programming,
but use a textual entry for the contents of frames and introduce
a new frame cursor mechanism to enable easy and efficient
keyboard-driven navigation and manipulation of code.



Frame-based editing operates on the syntax tree of the
underlying program and edit operations preserve its structural
integrity. Frames are indivisible (no deleting one curly bracket)
and expression brackets are always paired. This support,
however, does not come at the cost of usability or flexibility.
Manipulation in a frame editor requires fewer keypresses and
can be performed faster than editing text programs.

Another advantage of frame-based editors is that much of
the contextual knowledge used for tool support is known a pri-
ori and explicitly, rather than deduced from parsing partially-
written code, or guessing. This enables better support in IDEs,
including better code entry support and error reporting.

Our frame-based editor supports Stride, a new language
that is very similar to Java. This does not mean, however,
that a language must be designed specifically to be amenable
to frame-based editing. Creating a frame-based editor for any
existing programming language should be possible, as well as
for other structured text formats, such as HTML or XML.

An exemplar frame-based editor for Stride is available
(free, and open-source) in the Greenfoot programming en-
vironment1. Although the authors’ primary motivation was
improving educational programming environments, we believe
that the principles of frame-based editing could also offer im-
provements for proficient programmers in professional IDEs.

ACKNOWLEDGMENT

The work presented here builds on an earlier prototype by
Fraser McKay and Michael Kölling.

REFERENCES

[1] F. McKay and M. Kölling, “Predictive modelling for HCI
problems in novice program editors,” in Proceedings of the
27th International BCS Human Computer Interaction Conference,
ser. BCS-HCI ’13. BCS, 2013, pp. 35:1–35:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2578048.2578092

1Available at http://www.greenfoot.org

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch programming language and environment,” Trans. Comput.
Educ., vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1868358.1868363

[3] S. Cooper, “The design of Alice,” Trans. Comput. Educ.,
vol. 10, no. 4, pp. 15:1–15:16, Nov. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1868358.1868362

[4] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor -
Create Your Own Android Apps. O’Reilly, 2011.

[5] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer:
A syntax-directed programming environment,” Commun. ACM,
vol. 24, no. 9, pp. 563–573, Sep. 1981. [Online]. Available:
http://doi.acm.org/10.1145/358746.358755

[6] L. R. Neal, “Cognition-sensitive design and user modeling for
syntax-directed editors,” SIGCHI Bull., vol. 18, no. 4, pp. 99–102, May
1986. [Online]. Available: http://doi.acm.org/10.1145/1165387.30866

[7] M. Kölling, N. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education. ACM, 2015, pp. 29–38.

[8] M. Kölling, “The Greenfoot programming environment,” Trans.
Comput. Educ., vol. 10, no. 4, pp. 14:1–14:21, Nov. 2010. [Online].
Available: http://doi.acm.org/10.1145/1868358.1868361

[9] P. M. Fitts, “The information capacity of the human motor system
in controlling the amplitude of movement.” Journal of Experimental
Psychology, vol. 47, no. 6, pp. 381–391, 1954.

[10] R. Koitz and W. Slany, “Empirical comparison of visual to hybrid
formula manipulation in educational programming languages for
teenagers,” in Proceedings of the 5th Workshop on Evaluation and
Usability of Programming Languages and Tools, ser. PLATEAU ’14.
New York, NY, USA: ACM, 2014, pp. 21–30. [Online]. Available:
http://doi.acm.org/10.1145/2688204.2688209

[11] A. J. Ko, H. H. Aung, and B. A. Myers, “Design requirements for more
flexible structured editors from a study of programmers’ text editing,” in
CHI ’05 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’05. New York, NY, USA: ACM, 2005, pp. 1557–1560.
[Online]. Available: http://doi.acm.org/10.1145/1056808.1056965

[12] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. New York, NY, USA: ACM, 2004, pp. 455–462. [Online].
Available: http://doi.acm.org/10.1145/985692.985750


