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ABSTRACT
Block-based programming has become popular for children and
young school students, but at university level almost all program-
ming is still text-based. A third intermediate option is the use of
frame-based editors that combine elements of both block- and text-
based systems. However, there have been few evaluations of the
efficacy of frame-based editing, so its suitability for school use is
uncertain. This paper describes an experiment comparing the use
of frame-based and text-based editing in a UK school setting. A
total of 85 teenage students from five different schools each com-
pleted three sessions of object-oriented programming tasks and
a programming quiz, with each school assigned to use either a
text-based editor or frame-based editor. We found no difference in
understanding of object-oriented concepts between the two editors,
and no difference in task completion times. This provides some
evidence to suggest that frame-based editing is a viable option for
use in a school setting, in place of text-based editing.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; • General and reference→ Evaluation.
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1 INTRODUCTION
School teachers are interested in effective methods and tools to
teach programming to school students [4]. Programming environ-
ments for young novices commonly use block-based editors such
as Scratch [11]. Programming environments for older learners (e.g.
university students) and professionals are most commonly text-
based [15, 16]. A third intermediate option is the use of frame-based
program editors [8], which are designed to combine the best of both
approaches and thus be suitable for high-school learners.

Frame-based program editing treats each programming construct
(e.g. ‘if’ statements) as a single coherent entity, much like block-
based program editors do. The key differences between block-based
editing and frame-based editing are that:
• Block-based editors use draggable blocks at all levels of the ab-
stract syntax tree, whereas frame-based editors only use such
draggable syntax units down to the level of statements (so: func-
tions, control flow, assignment, etc) but use text entry for entering
and editing expressions;

• Frame-based editors feature a “frame cursor” that allows full
keyboard navigation and manipulation of programs in addition
to the mouse/touch manipulation of most block-based editors,
with the aim of improving productivity and accessibility [9, 12];

• Frame-based editors lay out the code in a single linear representa-
tion similar to text-based programs, rather than the unstructured
canvas of block-based editors, where independent small scripts
can be placed arbitrarily in two dimensions.
Themain frame-based editor available is named Stride1, that uses

a programming language semantically equivalent to Java. Stride
is available in the BlueJ integrated development environment [9],
along with a text-based editor for Java. This allows study of the dif-
ferences between the two editors, with the language semantics and
the wider development environment (BlueJ), otherwise unchanged.

To date there has only been one study [14] on the effectiveness
of frame-based program editing with novices (and one with non-
majors who have done some programming [8]). This means that
educators and other editor designers do not have a strong body of
evidence to determine how frame-based editing compares to other
styles of program editing.

1We note that for text-based programming, a programming language (Java) can be
clearly separated from its editor (IntelliJ, Notepad, etc). For frame-based and block-
based programming there is generally no such distinction: like Scratch, Stride is both
the name of the programming language but also the name of the editor.
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In this paper we present the results of a study that compares
frame-based program editing to text-based program editing. A total
of 85 students aged 14-17 from five different UK schools performed
the same tasks in BlueJ, using either the text-based Java program-
ming language or the frame-based Stride programming language.

1.1 Research Questions
Our research questions (RQs) for comparing Java and Stride are:
• RQ1 Speed: Is there a difference in time taken to complete tasks
when using Java vs Stride?

• RQ2 Understanding: How does the use of Java vs Stride impact
understanding of object-oriented programming concepts?

• RQ3 Ease: What are the differences in subjective ease of use in
Java vs Stride?
For all three RQs we are also interested in how these effects are

moderated by student age; we believe that in a relative comparison
Stride may be preferable at younger ages and Java at older ages.
Franklin et al. [5] found no performance difference in programming
learners between ages when faced with simple concepts, but for
advanced concepts, age was found to be a factor, so we believe it
could be a factor in this study of object-oriented programming.

RQ1 (speed) is relevant to the usability of the editor. If an editor
can allow students to finish a task faster then it may allow a teacher
to spend more time teaching concepts. But speed cannot be consid-
ered in isolation: an editor that generates the solution with a click
of one button is fast, but it does nothing to educate the learner.

The goal of using any programming editor in a classroom is
to facilitate the learning of programming concepts, so it is impor-
tant whether students’ understanding of these is (positively or
negatively) impacted. The result of RQ2 (understanding) is thus
very important for educators. Some programming concepts have
no discernible difference between Java and Stride – for example
the concept of integers or strings. We focused instead on some key
differences2 between Java and Stride that may affect understanding:
• the use of pre-provided slots to provide guidance and rigid struc-
ture for syntactic constructs (e.g. method declarations);

• depiction of general syntax (e.g. the assignment operator, which
is <= in Stride); and

• display of object-oriented terminology in the editor (e.g. the
labeled fields, methods sections).

See Figure 1 for a Stride screenshot showing some of these features.
The items that we felt would be impacted by these differences

that we chose to measure were:
• understanding of syntax, e.g. in Java and Stride’s variable decla-
ration “vehicle car” would they be able to distinguish which is
the type and which is the variable;

• assignment control flow;
• inheritance; and
• object-oriented terminology.

Another aspect of programming tools that can affect adoption
success is how easy students find it to use the tools. We collected
some subjective perceptions of ease for RQ3, to capture some of
their experience of using tools.

2A more complete description of Stride can be found in a paper by Kölling et al. [8].

Figure 1: Screenshot of the Stride editor. The editor has spe-
cific fixed sections for fields, constructors andmethods. The
horizontal blue bar is the frame cursor. Although they do
not have an explicitly drawn border, each field declaration
and statement – like the yellow method – is itself a frame
that can be dragged around or deleted as a whole item.

2 RELATEDWORK
There have been many previous studies comparing block-based
editing with text-based editing. Grover and Basu [6] suggested
that the choice of program editor may help with understanding
syntax, but may not be as effective at understanding semantics,
at least without specific supporting pedagogy. Weintrop and co-
authors have published several studies comparing aspects of block-
based and text-based editing [17–19] and Price and Barnes [13]
also published a study comparing blocks to text. This set of studies
have generally found modest positive support for using block-based
editors in teaching, thus implying that choice of program editor can
make a difference in programming education. We have followed a
similar study design to many of these studies but we are testing a
different style of editor: a frame-based editor.

Alrubaye et al. [1] presented and evaluated a hybrid block-text
tool that allows using a block palette to drag new code into a text
program. They found advantages of this hybrid approach compared
to both blocks and text, suggesting that it may be possible to pro-
vide better designs than blocks or text. Kölling et al. [7] offered a
classification of the relative advantages of blocks and text, and some
reasons why frame-based editing may confer the same benefits.

There have been two previous evaluations of the frame-based
Stride editor. Price et al. [14] compared a Java group and Stride
group from three classes in a single school as part of an outreach
program. All data was gathered in a single session. Price et al. found
small benefits of Stride but hypothesised that a single session was
not yet enough to overcome the learning effort required to master
the novel Stride interface. The present study therefore has three
separate sessions and also includes more participants, frommultiple
schools. The other evaluation of Stride also featured a single ses-
sion, examining only Stride, among university students with some
programming experience [8]. This study only collected subjective
rating data and comments, without any tests of understanding.
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3 STUDY DESIGN
We designed a multi-session, multi-institution study to compare
Java and Stride. Questionnaires were administered to students be-
fore and after three in-class sessions using either Java or Stride. To
limit the workload required of the teacher, and to mirror realistic
conditions, whole classes were assigned either to Java or to Stride;
a between factor design where no participant saw both editors.

Classes were run in physical classrooms (not virtually), but due
to the constraints of the COVID-19 pandemic, it was deemed infea-
sible to attempt in-person observations of the classes during the
experiment. Data was collected remotely, via online questionnaires
and passive observation facilitated by BlueJ’s ‘Blackbox’ data col-
lection mechanism [2]. This had the benefit of ensuring a realistic
classroom setting, untainted by the presence of an observer.

3.1 Timeline
Each classroom followed this timeline:
• Session 1: Students fill in pre-questionnaire and quiz, taking 10-15
minutes. Then they do the first programming session tasks.

• Session 2: Second programming session is carried out.
• Session 3: Third programming session is carried out, then stu-
dents fill in the post-questionnaire featuring the same quiz.
The three sessions were carried out in computing lessons in

the standard school timetable. Due to the differing timetables for
computing lessons across all the schools involved, it was infeasible
to guarantee identical session lengths and identical spacing between
the sessions across all classes. For example, some schools only had
computing lessons once a week, and some hadmultiple lessons each
week. We advised that the ideal interval was one week between
lessons, but understood that teachers could not guarantee this. We
included this spacing as a factor in the analysis.

3.2 Materials
Tomeasure the tools’ impact on understanding of programming, we
needed a test that would not take too much time away from the pro-
gramming sessions, and that would test object-oriented concepts
and be translatable to Java and Stride. We did not find any existing
tests in a catalogue in the literature [3], so we constructed our own.
We used ten multiple choice questions, designed to assess under-
standing of object-orientation, especially in Java’s semantic model.
The order of the multiple choice responses was randomised within
each question by the questionnaire software to avoid any position-
ing bias, but the questions were always presented in the same order.
Students assigned to the Java condition saw the answers as Java
code, while students assigned to the Stride condition saw the an-
swers formatted as Stride code. The exact same quiz was presented
to the students both in the pre- and the post-questionnaire.

We designed three sessions of programming tasks that could
be used in Java or Stride within the BlueJ programming system
(which we used because of its support for the Blackbox data col-
lection project [2]). Sessions were split into several smaller tasks
that feature code writing, editing, and comprehension. Both the
programming quiz and the set of tasks are available for inspection
in an Open Science Foundation (OSF) repository3.

3Link to OSF repository: https://osf.io/t2kzg/

3.3 Ethics & Anonymisation
Ethical approval was granted by King’s College London (ref: LRS-
20/21-20902). Teachers were required to get permission from their
school management before participating. Teachers signed an in-
formed consent form, as did the students, and the students’ parents
if the student was under 16. Students were anonymous, and were
given arbitrary identifiers to be able to track them during the study.

3.4 Educational Context
All of the schools who took part in were in the UK. The govern-
ment guidance differs between the UK’s constituent countries, but
broadly schools should offer computer science to all ages, and stu-
dents are usually allowed to choose which non-core subjects to
take from around the age of 14 onwards. The schools were all non-
selective, and were not fee-paying. Two of the five schools who
completed the study were all-male schools, which is noticeably
above the national average (only around 5% of non-selective non
fee-paying schools in the UK are single-sex).

3.5 Recruitment & Attrition
To aid recruitment during the COVID-19 pandemic, we gave an
incentive of 500 GBP for spending on the teacher’s classroom (e.g.
on hardware). Recruitment for the study began in autumn 2020. At
this time, thirteen teachers/classes across twelve different schools
were recruited to the study, and assigned a condition: six Java and
seven Stride. Due to pandemic-related lockdowns, ultimately, only
five classes from five different schools completed the study: three
using Java and two using Stride.

4 DATA PROCESSING
4.1 Data Cleaning
The five classes were examined to determine the timings of the ses-
sions. Activity outside class times (found in one of the five classes)
was removed from the analysis. Unfortunately, some of the stu-
dents’ data was missing or curtailed, because their connection to
the Blackbox server had not been stable, especially in one of the
Stride classes. Our task time analyses were designed to be tolerant
to this lack of data, and it did not affect the analyses based on ques-
tionnaires. In total, usable task data was collected from 65 students
out of the 85 who completed the questionnaires.

4.2 Task Data Extraction
The source code written by the students and their interaction activ-
ity was uploaded in real-time to the Blackbox data repository. This
enabled us to afterwards examine activity traces and identify when
a task was completed. We chose to use a simple classification: a
task could either be incomplete (including the case where it was not
attempted), partially correct (e.g. they wrote the right method call
for drawing an object, but used the wrong numbers as coordinates),
or correct. If a task was correct, the first point in time where the
correct solution was present in the code was marked, even if the
user later refactored it or re-introduced errors. If a task had an
incorrect solution (e.g. the wrong name for a method) but a future
task was correct, accounting for the earlier mistake, we did not
penalise the later task and marked it correct.

https://osf.io/t2kzg/
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All participants’ traces were first marked independently by two
markers each (picked randomly per-participant from five mark-
ers overall). Then all markers met again to clarify rules that had
repeatedly caused confusion. Markers each reviewed their own
judgments and individually adjusted marks based on the new rules.
The remaining disagreements were resolved by all five markers in a
joint meeting. Tasks which were not completed or were completed
out of order were excluded (25 out of 393 completed tasks).

It had been our hope to create tasks of roughly equal sizes. How-
ever, a Kruskal-Wallis test on task time vs task showed a significant
effect of task at the α = 0.05 level (p < 0.001). Therefore, we chose
not to analyse task times in a single large analysis. Task times were
– as expected – highly variable across students with a long tail.
Informally, our markers report that some students sometimes take
much longer than others on a task, because they did not under-
stand a particular compiler error, misunderstood the instructions, or
lacked the knowledge required for the question. Using task time as
a linear measure would unduly penalise such issues, so we instead
converted task times to per-task ranks for analysis.

5 ANALYSIS DESIGN
All tests performed in our analysis use frequentist methods with
α = 0.05 to check for statistical significance.

5.1 Preregistration & Open Science
The statistical analysis was voluntarily preregistered (albeit after
data collection – but before statistical analysis was carried out).
This can be found in an OSF repository4.

The code used to perform the analysis was written in R and will
be made available in the same OSF repository prior to publication.
The data files (survey responses and task marking) are available
on request from the lead author, as permission was not sought to
make the data public.

5.2 Statistical Modelling
The data set had one chosen independent variable (CIV): Java or
Stride. However it also had several extraneous independent vari-
ables (EIVs), both at individual student and classroom level (age,
experience, effect of teacher), which could influence the results.
This meant that a simple analysis comparing all Stride students
to all Java students could be invisibly confounded by these extra
factors. Thus we chose to use Hierarchical Linear Models (HLMs,
a type of mixed model) for our core analyses that could take into
account these extra factors.

An ideal model would feature levels for school, teacher, class,
and student (if not more). In the current study we are restricted in
how much of this we can model due to the available data. All of our
classes come from different schools; each teacher only appears with
one class. With such constraints it is impossible to separate the
effects of teacher from those of class or school. Thus for practical
simplification of the model, we have two levels: teacher/class/school
(hereafter referred to as “classroom”) and student. Given that our
primary interest is in student performance, we believe it is a reason-
able simplification to combine the higher-level sources of variance

4Link to OSF repository: https://osf.io/t2kzg/

into one level. The available variables for model construction are
as follows:

• Age: student age in years (per-student).
• Language: Java or Stride (per-classroom).
• Spacing: spacing between sessions (per-classroom).
• Classroom: classroom label (per-classroom).

5.2.1 Analyses. Our analysis involves building a model for each of
the dependent variables (DVs), which are listed in subsection 5.3.
The models are constructed using backward stepwise model con-
struction [10], which starts with a full model (containing all the
specified CIVs and EIVs) and then removes variables which do not
make a useful difference to the model fit. The result is a model
containing only statistically relevant factors, and from that we can
examine the factor weights to determine the level of the effect. The
full model for the analysis, in R syntax is:
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DV ~ Age∗Language + Spacing + (1 | Classroom)

Thismeans that the level of DV (a placeholder for each dependent
variable) is modelled as the sum of the interaction between student
age and programming language (Java or Stride) and the spacing
between sessions, with a grouping factor of classroom. The former
two are known as fixed effects, and classroom is a random effect.
Even though we are using backward stepwise model construction,
we start with a very small model to help ensure good model fit.

5.2.2 Task time encoding. As described in subsection 4.2, tasks
were marked as correct or partially correct at specific points in
time, which was used to calculate a time taken to complete a task.

There are two issues with task times. One is that the task times
are skewed, which causes mean values to be less informative – the
mean times are increased by a small number of very long task times.
Thus, we converted the task times into ranks, compared across all
students, with rank 1 given to the students who finished the task
fastest. Partially complete tasks were ranked below completed tasks
(but compared within each other for speed), and incomplete tasks
were always assigned the (possibly joint) bottom rank.

The second issue with task times is comparison between differ-
ent classrooms. Not every classroom spent the exact same amount
of time programming in each session, and neither did all students
within that classroom (some arrived late, and some showed possible
data loss at the end of their sessions). Therefore it seems inappro-
priate to compare their task performance across all tasks without
somehow accounting for total time spent.

To mitigate against this, we adopted the following algorithm.
First, all tasks where less than 10% of students completed themwere
discounted entirely. Then, for each task that a student completed,
the rank of that task was included into an average for that student.
The task after the last one they completed, where it existed, was
also included in the average – thus dragging down the average for
a single unfinished task but no more than that. So if there were five
tasks in a session where at least 10% of students completed them, a
student who completed three tasks would have their automatic last
place on the fourth task factored into their overall rank average,
but not their automatic last place in the fifth task.

Thismeans that the level of DV (a placeholder for each dependent
variable) is modelled as the sum of the interaction between student
age and programming language (Java or Stride) and the spacing
between sessions, with a grouping factor of classroom. The former
two are known as fixed effects, and classroom is a random effect.
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discounted entirely. Then, for each task that a student completed,
the rank of that task was included into an average for that student.
The task after the last one they completed, where it existed, was
also included in the average – thus dragging down the average for
a single unfinished task but no more than that. So if there were five
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https://osf.io/t2kzg/
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5.3 Hypothesis Testing
Our specific hypotheses (mapped from the respective research ques-
tions in subsection 1.1) and their statistical tests are as follows:

• Hypothesis 1: Students will differ in speed of completing the
session tasks between the Stride and Java editors. This will be
assessed by looking for statistical significance in the Language
factor in the models for the DV AvgTaskRank, the average rank
as described in the previous section.

• Hypothesis 2: Students’ performance improvement on the quiz
will differ between the Stride and Java editors. This will be as-
sessed by looking for statistical significance in the Language
factor in the model for the DVQuiz_delta, which is the differ-
ence in quiz score over the experiment (post minus pre).

• Hypothesis 3.1/3.2/3.3/3.4: Students’ ratings will differ on the
four DVs LStudentLearn, LStudentWrite, LStudentEdit, and
LStudentRead – four 7-point Likert scales asking students to
rate the editor on ease of learning, writing, editing and reading
respectively – in the Stride editor compared to the Java editor.
This will be assessed by looking for statistical significance in
the Language factor in the model for each of these dependent
variables.

We have a cross-cutting additional hypothesis: for each measure
the effect of Stride may differ with age. This will be assessed by look-
ing for statistical significance in the Age*Language interaction in
each model.

6 RESULTS
Results are presented with coefficient estimates to 2 significant
figures and p-values to 3 decimal places. Where applicable, 95%
confidence intervals (CIs) are provided.

6.1 Data Overview
There were 85 students, aged 14–17 inclusive (mean 15.3) with 76
identifying as male, 6 as female and 3 selecting an “other” option. In
terms of experience, 54 listed experience with a block language, 53
listed experience outside lessons (30 indicated both, 8 had neither).
There were a further 67 pre-questionnaires that did not have a
matching post-questionnaire and were discarded: 6 from classes
that completed the experiment, and 61 from classes that did not
complete the experiment. All schools that completed the study were
the same type: non-selective non-fee publicly-operated.

Performance on the quiz could range from 0 to 10 (the number
of correct answers to 10 multiple choice questions). The results
are shown in Figure 2, with pre-results plotted against post-results.
A number of possible uncertainties relating to quiz performance
were:

• Existence of a ceiling or floor effect. Only one participant scored 0
in pre-test, and only one participant scored 0 in post-test. Similarly,
only two participants scored 10 (both in post). The median score
was 5 in pre- and 6 in post-test, suggesting that the quiz provided
a good range of scores between its 0 and 10 limits.

• Significant improvement effect from sitting the same quiz in pre-
and post-test. It is possible students could have remembered the
questions and searched online for answers afterwards. However,
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Figure 2: Scores on the pre Quiz (x-axis) and post Quiz (y-
axis). Dot size is proportional to the number of students
present at a given score combination, separately for Java
students (left semicircles) and Stride students (right semi-
circles). The diagonal solid line indicates matching pre and
post performance; students who performed better on post
than pre are above/left of the line. The dashed vertical/hor-
izontal lines indicate chance performance; scores to the
right/above these dashed lines respectively indicate better
than chance performance.

with only a small difference in medians between pre- and post-
questionnaire, we did not observe evidence for this. Additionally,
students were not told what the correct answer was during or
after the pre-questionnaire, nor were they told that they would
be given the same questions again in future.

• The small difference raises another question: Is the low level of
performance improvement suggestive of a lack of effort on the
students’ part? Chance performance on the task5 was 2.75. A one-
sample Wilcoxon signed rank test confirmed that both the pre-
and post-quizzes were above chance performance (p < 0.001 in
both cases).

6.2 Task Completion Times
We tested hypothesis 1 by modelling the AvgTaskRank variable,
which is calculated by comparing average ranks of the students
across multiple tasks.

6.2.1 Analysis. The analysis for tasks showed only an effect of
classroom, and not any other factors. There was thus no difference
between Java and Stride, and no effect of Age.

57 questions had 4 options, 3 questions had 3 options, so chance is 7× 1
4 +3× 1

3 = 2.75.



UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom Brown et al.

Figure 3: Violin plot of the Quiz delta (changes in perfor-
mance from pre to post, positive means improved, only in-
teger values are possible). There is one “violin” shape for
each classroom, labelled by their Language condition on the
x-axis. The width of each shape shows the density of delta
scores (y-axis) at that point. The plotted point is the median
delta for that classroom.

6.3 Quiz performance difference
We tested hypothesis 2 by modelling the Quiz_delta variable,
which is the change in performance between the pre- and post-
quiz. We used the modelling approach described in subsection 5.2.

A Kruskal-Wallis test revealed that pre-quiz performance varied
by classroom (p = 0.020). However, this does not invalidate our
analyses: the Quiz_delta variable is a difference in performance
between pre and post that already accounts for these baseline dif-
ferences (thus is akin to a “value added” score) – and classroom
is included as a factor in all our models, which will help take into
account any classroom-based differences in prior ability.

6.3.1 Analysis. After stepwise reduction of the core analysis model
forQuiz_delta, the only factor that remained was classroom. This
can be seen in Figure 3which shows the five classrooms. Therewas a
difference in performance change, but informally: since the highest
and lowest classroom medians were the two Stride classrooms,
there was no effect of language.

6.4 Opinions on Ease of Use
Students were asked for their opinions on whether the language
they used was easy to: read, edit, write, learn. The four responses
were each on a 1–7 Likert scale with higher being more positive
(easier to read, etc).

6.4.1 Analysis. Themodels for the learn, read, and edit Likert items
each showed an effect of classroom, but not of any other factor. The
model for write showed an effect of language (but not classroom),
with Stride scoring 0.98 points (95% CI: -1.65 to -0.31, p = 0.005)
lower on the Likert scale.

7 LIMITATIONS
Due to the effects of COVID-19, our sample size was not as large
as intended, although it still involved multiple classrooms across
multiple schools.

Although our study was run over multiple sessions, there is still a
confound with Stride that the students had to learn a new interface
and a new language, whereas the Java students were only learning
a new language.

The gender balance of our sample was 7% female. This was lower
than the national average for computing in UK schools (21% female
at age 16, 15% at age 18). This low figure is because two of our
five classes were from all-male schools (the other schools in the
original sign-ups were mixed or all-female), which skewed our
gender balance. This could make our findings less representative.

8 CONCLUSIONS
We conducted a multi-institution study to compare two pedagogical
programming editors: a text-based editor (Java) and a frame-based
editor for a semantically identical programming language (Stride).
All other factors were held constant: the development environment
(BlueJ), programming language semantics, programming tasks, and
outcome measures. Our study was impacted by COVID-19 but five
schools completed the study: three using Java and two using Stride,
with 85 students in total.

The overall finding was that there was no difference between
Java and Stride across almost all our measures. Specifically, the
outcomes of our research questions were:

• RQ1 (Speed): Task completion times did not differ between the
two conditions.

• RQ2 (Understanding): No difference was found in understanding
of concepts between the two conditions.

• RQ3 (Ease): Students rated Stride as being harder to write code
in, but otherwise did not rate them differently on ease of use,
reading and editing.

Almost none of the students had prior experience in Java, so they
were all learning a new language. In the case of the Stride group,
participants were additionally learning a new way to edit source
code. Despite this additional challenge, we did not see a meaningful
difference between the editors.

We suggest that this study provides evidence that both Java and
Stride are equally suited for use in secondary education, especially
taken in combination with the previous study [14] that showed
a similar result. We believe that educators can have confidence
that Stride is a viable option for high-school education, and that
designers should continue to explore the rich space of interaction
design that lies between block-based and text-based editing, in
the knowledge that hybrid approaches can be viable for school
education.

ACKNOWLEDGMENTS
We are grateful to Jane Waite for her help with recruiting partici-
pants, and we are grateful to our participants for taking part during
such a tumultuous time.



A Frame of Mind: Frame-based vs. Text-based Editing UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom

REFERENCES
[1] Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer. 2019. Com-

parison of Block-Based and Hybrid-Based Environments in Transferring Pro-
gramming Skills to Text-Based Environments. In Proceedings of the 29th Annual
International Conference on Computer Science and Software Engineering (Toronto,
Ontario, Canada) (CASCON ’19). IBM Corp., USA, 100–109.

[2] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
223–228. https://doi.org/10.1145/2538862.2538924

[3] Adrienne Decker and Monica M. McGill. 2019. A Topical Review of Evaluation
Instruments for Computing Education. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 558–564. https:
//doi.org/10.1145/3287324.3287393

[4] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-
naszkiewicz. 2019. Research This! Questions That Computing Educators Most
Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conference on International Computing Education Research (Toronto ON,
Canada) (ICER ’19). ACM, New York, NY, USA, 259–267. https://doi.org/10.1145/
3291279.3339402

[5] Diana Franklin, Gabriela Skifstad, Reiny Rolock, Isha Mehrotra, Valerie Ding,
Alexandria Hansen, David Weintrop, and Danielle Harlow. 2017. Using Upper-
Elementary Student Performance to Understand Conceptual Sequencing in a
Blocks-Based Curriculum. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 231–236. https:
//doi.org/10.1145/3017680.3017760

[6] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning in In-
troductory Block-Based Programming: Examining Misconceptions of Loops,
Variables, and Boolean Logic. In Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 267–272.
https://doi.org/10.1145/3017680.3017723

[7] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Programming. In Pro-
ceedings of the Workshop in Primary and Secondary Computing Education (London,
United Kingdom) (WiPSCE ’15). Association for Computing Machinery, New York,
NY, USA, 29–38. https://doi.org/10.1145/2818314.2818331

[8] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. 2017. Frame-Based
Editing. Visual Languages and Sentient Systems 3 (7 2017), 40–67.

[9] Michael Kölling, Neil C. C. Brown, Hamza Hamza, and Davin McCall. 2019. Stride
in BlueJ – Computing for All in an Educational IDE. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN,

USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA,
63–69. https://doi.org/10.1145/3287324.3287462

[10] Alexandra Kuznetsova, Per B. Brockhoff, and Rune H. B. Christensen. 2017.
lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical
Software, Articles 82, 13 (2017), 1–26. https://doi.org/10.18637/jss.v082.i13

[11] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. ACM Trans.
Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages. https://doi.org/10.1145/
1868358.1868363

[12] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessi-
bility Barriers to Blocks Programming for Children with Visual Impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–10. https://doi.org/10.1145/3173574.3173643

[13] Thomas W. Price and Tiffany Barnes. 2015. Comparing Textual and Block In-
terfaces in a Novice Programming Environment. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research
(Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New
York, NY, USA, 91–99. https://doi.org/10.1145/2787622.2787712

[14] Thomas W. Price, Neil C. C. Brown, Dragan Lipovac, Tiffany Barnes, and Michael
Kölling. 2016. Evaluation of a Frame-based Programming Editor. In Proceedings
of the 2016 ACM Conference on International Computing Education Research (ICER
’16). ACM, 33–42. https://doi.org/10.1145/2960310.2960319

[15] Latifa Ben Arfa Rabai, Barry Cohen, and Ali Mili. 2015. Programming Language
Use in US Academia and Industry. Informatics in Education 14, 2 (2015), 143–160.

[16] Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Murphy. 2018.
Language Choice in Introductory Programming Courses at Australasian and
UK Universities. In Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). Association for
Computing Machinery, New York, NY, USA, 852–857. https://doi.org/10.1145/
3159450.3159547

[17] David Weintrop and Nathan Holbert. 2017. From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,
Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New
York, NY, USA, 633–638. https://doi.org/10.1145/3017680.3017707

[18] David Weintrop, Heather Killen, Talal Munzar, and Baker Franke. 2019. Block-
Based Comprehension: Exploring and Explaining Student Outcomes from a Read-
Only Block-Based Exam. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 1218–1224. https://doi.org/10.
1145/3287324.3287348

[19] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM Trans. Comput.
Educ. 18, 1, Article 3 (Oct. 2017), 25 pages. https://doi.org/10.1145/3089799

https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3287324.3287393
https://doi.org/10.1145/3287324.3287393
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3017680.3017760
https://doi.org/10.1145/3017680.3017760
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/3287324.3287462
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3173574.3173643
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2960310.2960319
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1145/3287324.3287348
https://doi.org/10.1145/3287324.3287348
https://doi.org/10.1145/3089799

	Abstract
	1 Introduction
	1.1 Research Questions

	2 Related Work
	3 Study Design
	3.1 Timeline
	3.2 Materials
	3.3 Ethics & Anonymisation
	3.4 Educational Context
	3.5 Recruitment & Attrition

	4 Data Processing
	4.1 Data Cleaning
	4.2 Task Data Extraction

	5 Analysis Design
	5.1 Preregistration & Open Science
	5.2 Statistical Modelling
	5.3 Hypothesis Testing

	6 Results
	6.1 Data Overview
	6.2 Task Completion Times
	6.3 Quiz performance difference
	6.4 Opinions on Ease of Use

	7 Limitations
	8 Conclusions
	Acknowledgments
	References

