
Investigating Novice Programming Mistakes:
Educator Beliefs vs Student Data

Neil C. C. Brown and Amjad Altadmri
School of Computing

University of Kent
Canterbury, Kent, UK

{nccb,aa803}@kent.ac.uk

ABSTRACT
Educators often form opinions on which programming mis-
takes novices make most often – for example, in Java: “they
always confuse equality with assignment”, or “they always
call methods with the wrong types”. These opinions are
generally based solely on personal experience. We report a
study to determine if programming educators form a consen-
sus about which Java programming mistakes are the most
common. We used the Blackbox data set to check whether
the educators’ opinions matched data from over 100,000 stu-
dents – and checked whether this agreement was mediated
by educators’ experience. We found that educators formed
only a weak consensus about which mistakes are most fre-
quent, that their rankings bore only a moderate correspon-
dence to the students in the Blackbox data, and that edu-
cators’ experience had no effect on this level of agreement.
These results raise questions about claims educators make
regarding which errors students are most likely to commit.

Categories and Subject Descriptors
K.3.2 [Computers And Education]: Computer and In-
formation Science Education

General Terms
Experimentation, Human Factors

Keywords
Programming Mistakes; Educators

1. INTRODUCTION
Educators naturally form opinions on common mistakes

that their students make when learning to program. Such
opinions are reflected in textbooks – for example, in Java:
“Failing to use equals() to compare two strings is probably
the most common single mistake made by Java novices” [22],
“The most common mistake made with an if statement is the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’14, August 11-13, 2014, Glasgow, Scotland, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632343.

use of a single equal sign to compare equality” [7], “A com-
mon mistake in for loops is to accidentally put a semicolon
at the end of the line that includes the for statement” [4].
In this paper, we set out to determine: are such observa-
tions accurate in general? This matters for several reasons.
Firstly, recent research by Sadler et al [15] suggests that
knowledge of student misconceptions is important to edu-
cator efficacy, and thus it is of interest whether educators’
impressions about student mistakes are correct. Secondly,
when educators communicate with each other (face-to-face
or online), it matters whether their opinions on common
student mistakes are accurate and generalise to each other’s
students. Knowing which mistakes are common also informs
the writing of instructional materials such as textbooks.

Previous studies that have investigated student errors dur-
ing [Java] programming have focused on cohorts of up to 600
students at a single institution [1, 5, 6, 10, 11, 19]. However,
the recently launched Blackbox data collection project [3]
affords an opportunity to observe the mistakes of a large
number of students at a variety of institutions – for exam-
ple, from September to December 2013, the project collected
error messages and Java code from around 110,000 users.

In this paper we describe a study to check if educators’
opinions on beginners’ mistakes in Java form a consensus,
and whether they generalise to all students. We combine a
survey of educators with data from the Blackbox project to
answer the following research questions:

• Do educators’ views form a consensus about the fre-
quency of specified student Java mistakes?

• Do educators’ views of mistake frequency match the
observed behaviour of students in a large-scale multi-
institution data set?

• Are more experienced educators’ views more likely to
match the students’ data than novice educators?

2. RELATED WORK

2.1 Observing Student Errors
The concept of monitoring student behaviour and mis-

takes while programming has a long history in computing ed-
ucation research. The Empirical Studies of Programming [16]
workshops in the 1980s had several papers making use of this
technique for Pascal and other languages. More recently,
there have been many such studies specifically focused on
Java, which is also the topic of this study.

http://dx.doi.org/10.1145/2632320.2632343

Many of these studies used compiler error messages to
classify mistakes. Jadud [11] looked in detail at student
mistakes in Java and how students went about solving them.
Tabanao et al. [19] investigated the assocation between er-
rors and student course performance. Denny et al. [5] looked
at how long students take to solve different errors, Dy and
Rodrigo [6] looked at improving the error messages given to
students, and Ahmadzadeh et al. [1] looked at student er-
ror frequencies and debugging behaviour. Jackson et al. [10]
identified the most frequent errors among their novice pro-
gramming students. All six of these studies used compiler
error messages to classify errors. However, early results from
McCall [14] suggest that compiler error messages have an
imperfect (many-to-many) mapping to student misconcep-
tions. Additionally, all six studies looked at cohorts of (up
to 600) students from a single institution.

Our study is novel in that it looks at student mistakes
from a much larger number of students (over 100,000) from
a large number of institutions1, thus providing more robust
data about error frequencies. An earlier paper about Black-
box gave a brief list of the most frequent compiler error
messages [3], but in this study we do not simply use com-
piler error messages to classify errors. Instead, we borrow
error classifications from Hristova et al. [9], which are based
on surveying educators to ask for the most common Java
mistakes they saw among their students.

2.2 Educators’ Opinions
Spohrer and Soloway [17] proposed in 1986 to examine the

accuracy of educator folk wisdom. However, they did not
survey educators, and instead took two anecdotal folk wis-
doms about learning to program and then compared them
to actual data from students (in Pascal). Ben-David Ko-
likant [2] interviewed some educators about students’ ap-
proaches to programming, but at a higher level, without
reference to a specific language. Hristova et al. [9] surveyed
a combination of local teaching assistants and students, as
well as educators from 58 universities, asking about common
Java mistakes. This data was combined to form a list of 20
Java mistakes that were detectable at compile-time. We base
our classification of mistakes on this work, but Hristova et
al. did not test these predictions themselves against actual
student data. As far as we are aware, our study is the first
to survey educators about Java programming mistakes and
compare their opinions to actual data.

3. METHOD

3.1 Student Mistakes
We used Hristova et al’s [9] twenty student mistakes as

a basis for our analysis. We removed two mistakes: firstly,
“leaving a space after a period when calling a method”, which
is a style issue not a programming mistake, and secondly,
“improper casting” which was not described clearly enough
for us to operationalise. We also altered one further question
“invoking a class method on an object” after several of our
pilot testers remarked that this was not a mistake, but the
reverse (invoking an instance method on a class) was, and
they had seen the latter much more often. This left eighteen
misconceptions, which we labelled A through R:
1We have no way of measuring the number of institutions in
the Blackbox data, but simply: the 100,000 students must
be split over at least several hundred institutions.

A: Confusing the assignment operator (=) with the com-
parison operator (==).
For example: if (a = b) ...

B: Use of == instead of .equals to compare strings.
For example: if (a == "start") ...

C: Unbalanced parentheses, curly brackets, square brack-
ets and quotation marks, or using these different symbols
interchangeably.
For example: while (a == 0]

D: Confusing “short-circuit” evaluators (&& and ||) with
conventional logical operators (& and |).
For example: if ((a == 0) & (b == 0)) ...

E: Incorrect semi-colon after an if selection structure be-
fore the if statement or after the for or while repetition struc-
ture before the respective for or while loop.
For example:
if (a == b);

return 6;

F: Wrong separators in for loops (using commas instead
of semi-colons)
For example: for (int i = 0, i < 6, i++) ...

G: Inserting the condition of an if statement within curly
brackets instead of parentheses.
For example: if {a == b} ...

H: Using keywords as method names or variable names.
For example: int new;

I: Invoking methods with wrong arguments (e.g. wrong
types).
For example: list.get("abc")

J: Forgetting parentheses after a method call.
For example: myObject.toString;

K: Incorrect semicolon at the end of a method header.
For example:
public void foo();

{

...

}

L: Getting greater than or equal/less than or equal wrong,
i.e. using => or =< instead of >= and <=.
For example: if (a =< b) ...

M: Trying to invoke a non-static method as if it was static.
For example: MyClass.toString();

N: A method that has a non-void return type is called
and its return value ignored/discarded.
For example: myObject.toString();

O: Control flow can reach end of non-void method without
returning.
For example:
public int foo(int x)

{

if (x < 0)

return 0;

x += 1;

}

P: Including the types of parameters when invoking a
method.
For example: myObject.foo(int x, String s);

Q: Incompatible types between method return and type
of variable that the value is assigned to.
For example: int x = myObject.toString();

R: Class claims to implement an interface, but does not
implement all the required methods.
For example: class Foo implements ActionListener { }

3.2 Educators’ Survey
We prepared a questionnaire that listed our eighteen stu-

dent mistakes and asked respondents to rate each mistake
on a scale of infrequent to frequent, by making a mark along
a visual analogue scale (a straight line with endpoints, like
so:). These scales were measured to the nearest 1

100
of their length and recorded as a number from 0 to 100.

This paper questionnaire was given out to attendees of
the ICER 2013 conference. An equivalent online electronic
version of the questionnaire was also later developed, and
was advertised via the SIGCSE mailing list, the UK Com-
puting At School forum and through Twitter. (Those who
had responded to the paper version were instructed not to
complete the online version.)

29 participants returned a paper questionnaire and 191
started filling out the online questionnaire (although many
did not complete). Only 76 participants filled in all scales
for all questions (20 paper and 56 online), and this formed
the sample set for all analyses. Participants were also asked
about their educational experience in different sectors. 56
had experience only in the tertiary sector (age 18+), 3 only
in secondary (ages 11–18), 14 in secondary and tertiary, and
the remaining 3 in tertiary, secondary and primary (ages 4–
11). The educators’ experience is detailed and analysed in
the results in section 4.1.

3.2.1 Inter-Educator Agreement
To measure agreement among educators we used Kendall’s

coefficient of concordance (aka Kendall’s W) [12]. This
statistic can be used to assess the agreement among ranks
assigned by a group of raters to a set of items, by looking at
the variance among the ranks of the different mistakes.

3.3 Student data
Data about student mistakes was taken from the Black-

box data set [3], which collects Java code written by users
of BlueJ, the Java beginners’ IDE. We used data from the
period 1st Sep. 2013 to 31st Dec. 2013 (inclusive), as repre-
senting the autumn/winter term in the northern hemisphere.

We had three methods of detecting mistakes. For four
of the student mistakes, I, M, O, R, we were able to use
the compiler error message directly to detect the mistake.
However, this was not possible for the other errors, as some
of them are logical errors that do not cause a compiler error
or warning, while in other cases the error messages do not
have a one-to-one mapping to our mistakes of interest. Thus
for one of the other mistakes (C) we performed a post-lexing
analysis (matching brackets) and for the final thirteen we
used a customised permissive parser to parse the source code
and look for the errors. The source code of all the tools used
will be available shortly.

We took each source file in the data set, and tracked the
file over time. At each compilation we checked the source
file for the eighteen mistakes. If the mistake was present,
we then looked forward in time to find the next compilation
where the mistake was no longer present (or until we had no
further data for that source file). When the mistake was no
longer found – which could have been because the mistake
was corrected or because the offending code was removed
or commented out – we counted this as one instance of the
mistake. Further occurrences in the same source file were
treated as further instances.

3.4 Educator and Student Agreement
To measure agreement between educators’ ratings and the

Blackbox frequencies, we used the average Spearman’s ρ
(rho) for pairwise comparisons between each educator and
the Blackbox data (thus: one correlation per rater)2. (We
term these pairwise correlations between educators and the
Blackbox data: educator accord.) This use of the average
was originally recommended by Lyerly [13], then explained
and generalised by Taylor and Fong [21, 20] to add a sig-
nificance test. In our example, Taylor’s ρ̄t,c is the average
of the pairwise correlations between the Blackbox data and
each educator, corrected for continuity.

3.5 Educator and Student Agreement – Effect
of Experience

To check if this accord was affected by educators’ expe-
rience, we used the following procedure. As described in
the previous section, we first calculated educator accord, us-
ing Spearman’s ρ as a measure of agreement between each
educator’s rankings and the Blackbox rankings (one corre-
lation per rater). This accord was then correlated (again
with Spearman’s ρ) with the educators’ total years of expe-
rience3. A significant correlation would indicate an effect of
experience on educators’ agreement with the Blackbox data.

4. RESULTS

4.1 Educators
Our analysis used responses from the 76 educators who

gave rankings to all of the eighteen student mistakes. Ed-
ucators were also asked how many years they had been an
educator, to the nearest year4. Educators were also asked
for the number of years spent teaching introductory pro-
gramming, in any language or in Java, to three different age
groups (4–11, 11–18, and 18+), so 6 numbers in all. We
wished to combine these into a measurement of years spent
teaching introductory programming in any language or in
Java (i.e. collapsing across age group)5. Examination of the
data suggested that some educators had taught some age
groups simultaneously, so rather than summing across the
age groups, we used the maximum figure from the three age
groups. (Only 17 of the 76 had taught more than one age
group.) We also capped the years spent teaching Java at
19, the language’s current age, which affected two educators
who claimed to have been teaching Java for more than 19
years. Frequencies for the years of experience are given in
Figure 1.

4.2 Agreement Among Educators
Our analysis of Kendall’s coefficient of concordance among

the educators produced the result W = 0.408. For aid in

2Spearman’s ρ is a correlation between the ranks of the two
different variables, and thus looks only at the ordering of
mistake frequency, not the exact frequencies nor the educa-
tor’s 0–100 ratings.
3Our use of ρ here means that we do not look for a linear
effect of experience (e.g. accuracy increasing linearly from 5
to 10 to 15 years), but rather: when educators are ordered
by experience, does this match their ordering by accuracy?
4Since most educators begin their career in September, ask-
ing for a more precise measurement than the nearest year
would not provide greater fidelity.
5In hindsight, we should have asked for these figures directly.

0

5

10

15

20

25

30

35

0-4 5-9 10-14 15-19 20-24 25-29 30+

F
re

qu
en

cy
 C

ou
nt

Years

As Educator
Teaching Introductory Programming

Teaching Introductory Programming in Java

Figure 1: The distribution of years for surveyed
educators: how long they have been an educator
(solid black bar, N = 56), how many years they have
spent teaching introductory programming (grey bar,
N = 76) and how many years they have spent teach-
ing introductory programming in Java (hollow bar,
N = 76). Note that due to the different number of
total responses, comparisons between the black bar
and other bars are problematic.

interpretation, we use a conversion to Spearman’s ρ corre-
lation for ranked data [8, p313], which gives ρ = 0.400. In-
formally, this means that the educators are closer to chance
agreement than they are to complete agreement. The edu-
cators we surveyed form a very weak consensus about which
errors are most frequently made by students.

4.3 Student Mistakes
We used our detector to look for the number of instances

of mistakes, as described in the method section. The data set
featured 14,235,239 compilation events, of which 7,333,201
were successful and 6,902,038 were unsuccessful. Each com-
pilation may include multiple source files – the total num-
ber of source files considered was 17,144,721 files, of which
8,787,189 were compiled successfully and 8,357,532 were not.

We can informally categorise the mistakes as follows:
Misunderstanding (or forgetting) syntax:

• A (confusing = with ==),

• C (mismatched parentheses),

• D (confusing & with &&),

• E (spurious semi-colon after if, for, while),

• F (wrong separator in for),

• G (wrong brackets in if),

• H (keyword as variable or method name),

• J (forgetting parentheses when calling methods),

• K (spurious semi-colon after method header),

• L (less-than/greater-than operators wrong),

• P (including types in actual method arguments).

Type errors:

• I (calling method with wrong types),

• Q (type mismatch assigning method result).

Other semantic errors:

• B (using == to compare strings),

Mistake Frequency Error Type
C 404560 Syntax
I 165832 Type
O 137230 Semantic
N 86107 Semantic
A 68254 Syntax
B 45012 Semantic
M 30754 Semantic
R 24846 Semantic
P 21694 Syntax
E 20264 Syntax
K 16156 Syntax
Q 14371 Type
D 11212 Syntax
J 8332 Syntax
L 1916 Syntax
F 1171 Syntax
H 415 Syntax
G 63 Syntax

Table 1: Frequency of mistakes committed by stu-
dents from 1st Sep. 2013 to 31st Dec. 2013 (incl.).

0

2

4

6

8

10

12

14

16

18

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Educator Accord

Figure 2: The distribution of accord scores. Picking
ranks randomly would give an educator an average
accord of 0, while 1 would indicate perfect agree-
ment (and -1 perfect disagreement). Inspection of
Q-Q plots confirms data is normal, as expected [21],
with two notable outliers (visible above, far left).

• M (invoking instance method as static),

• N (discarding method return),

• O (missing return statement),

• R (missing methods when implementing interface).

Note that mistake N (ignoring the non-void result of a
method) is not a compile error, and is not always an error
(e.g. when you call a remove method that returns the item
removed, you may not need to do anything with the return).

The frequencies of the number of instances of the different
mistakes are shown in table 1, along with our informal clas-
sification of the error message. It can be seen that the type
and semantic errors generally occur more frequently than
the syntax errors.

4.4 Educator and Student Agreement
The average ρ for correlations between each educator and

the Blackbox data was 0.514 (3 s.f.). Corrected for continu-
ity [20], this gives a ρ̄t,c = 0.514, so z = 18.5 (3 s.f.) and thus
p < 0.001. Since the standard deviation of ρ̄t, c is 0.028 [21]

2

4

6

8

10

12

14

16

18

24681012141618

E
du

ca
to

r
ra

nk

Blackbox rank

Figure 3: Examples of different accord scores. Per-
fect agreement is shown by the solid line, and accord
is proportional to the square of the vertical distance
of each point from the line. The empty circles are
the ranks assigned by the educator with highest ac-
cord (0.876). The solid squares are the ranks as-
signed by one of the two educators surrounding the
median accord (0.537). The pluses are the ranks as-
signed by the educator with lowest accord (-0.137).

and normality is assumed, the 95% confidence interval is
[0.460, 0.569] (3 s.f.). Therefore, there was a statistically
significant overall agreement, termed accord, between edu-
cators and the Blackbox data, with an average correlation of
0.514. The distribution of accord scores is shown in Figure
2. An example of accord is shown in Figure 3. The latter
figure shows that while the educator with highest accord was
reasonably close to the correct answer, the median educator
in our sample (the solid squares) had only a moderate level
of agreement, ranking the most popular Blackbox mistake
as joint eleventh, and getting most other errors wrong by
around four ranks. This level of agreement between educa-
tors and the student data was thus in general quite low.

4.5 Educator and Student Agreement – Effect
of Experience

The relationship between educator accord (i.e. agreement
with the Blackbox data) and years of being an educator
is shown in Figure 4. The Spearman’s ρ correlation was
not significant at the 5% level, ρ = −0.180, p = 0.202.
As a follow up analysis, we also examined whether years
of experience teaching introductory programming or teach-
ing introductory programming in Java had an effect (al-
pha corrected to 0.025 for multiple comparisons). The re-
sult for correlating years spent teaching introductory pro-
gramming in any language with accord was not significant,
ρ = −0.151, p = 0.192, and neither was the result corre-
lating years spent teaching introductory Java programming
with accord: ρ = 0.04, p = 0.972. Thus, there was no ef-
fect of educator experience (in any measure we tried) on an
educator’s level of agreement with the Blackbox data.

18151051

0-4

5-9

10-14

15+

0-4

5-9

10-14

15+

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

Rank

Y
ea

rs
 o

f J
av

a
E

xp
er

ie
nc

e

M
is

ta
ke

F
ig

u
re

5
:

G
ra

p
h
ic

il
lu

st
ra

ti
n
g

th
e

e
ff

e
c
t

o
f

y
e
a
rs

sp
e
n
t

te
a
ch

in
g

in
tr

o
d
u
c
to

ry
p
ro

g
ra

m
m

in
g

in
J
a
v
a

o
n

m
is

ta
k
e

fr
e
q
u
e
n
c
y

ra
ti

n
g
.

E
a
ch

v
e
rt

ic
a
l

b
a
n
d

(a
lt

e
rn

a
te

ly
sh

a
d
e
d

fo
r

p
re

se
n
ta

ti
o
n
)

is
a

se
p
a
ra

te
m

is
ta

k
e

a
n
d

e
ff

e
c
ti

v
e
ly

a
se

p
a
ra

te
g
ra

p
h
,

w
it

h
y
e
a
rs

p
lo

tt
e
d

a
lo

n
g

th
e

X
a
x
is

,
g
ro

u
p

e
d

in
to

4
g
ro

u
p
s,

v
e
rs

u
s

ra
n
k
in

g
(Y

a
x
is

).
T

h
e

a
re

a
o
f

e
a
ch

c
ir

c
le

is
p
ro

p
o
rt

io
n
a
l
to

fr
e
q
u
e
n
c
y

(n
u
m

b
e
r

o
f

e
d
u
c
a
to

rs
).

If
th

e
re

w
a
s

a
g
re

e
m

e
n
t

a
m

o
n
g

a
ll

ra
te

rs
,

w
e

w
o
u
ld

e
x
p

e
c
t

to
se

e
h
o
ri

z
o
n
ta

l
g
ro

u
p
in

g
a
ro

u
n
d

a
c
o
m

m
o
n

ra
ti

n
g

w
it

h
in

e
a
ch

b
a
n
d
.

A
lt

e
rn

a
ti

v
e
ly

,
if

th
e

a
m

o
u
n
t

o
f

e
x
p

e
ri

e
n
c
e

h
a
d

a
n

e
ff

e
c
t

o
n

ra
ti

n
g
,

w
e

w
o
u
ld

e
x
p

e
c
t

to
se

e
a

n
o
n
-h

o
ri

z
o
n
ta

l
d
ia

g
o
n
a
l

tr
e
n
d

w
it

h
in

e
a
ch

b
a
n
d
.

In
th

is
d
ia

g
ra

m
,

it
c
a
n

b
e

se
e
n

th
a
t

a
g
re

e
m

e
n
t

o
f

e
it

h
e
r

k
in

d
is

g
e
n
e
ra

ll
y

w
e
a
k
.

F
o
r

in
fo

rm
a
ti

o
n
,

th
e

ra
n
k

d
e
ri

v
e
d

fr
o
m

th
e

B
la

ck
b

o
x

d
a
ta

is
d
ra

w
n

o
n

to
e
a
ch

b
a
n
d

a
s

a
h
o
ri

z
o
n
ta

l
li
n
e
,

a
n
d

th
u
s

a
c
c
o
rd

is
(i

n
fo

rm
a
ll
y
)

th
e

v
e
rt

ic
a
l

d
is

ta
n
c
e

o
f

th
e

c
ir

c
le

s
fr

o
m

th
e
se

h
o
ri

z
o
n
ta

l
li
n
e
s.

If
e
x
p

e
ri

e
n
c
e

h
a
d

a
n

e
ff

e
c
t

o
n

a
c
c
o
rd

,
w

e
w

o
u
ld

se
e

th
a
t

th
e

ri
g
h
th

a
n
d

p
o
in

ts
w

it
h
in

e
a
ch

b
a
n
d

w
e
re

c
lo

se
r

to
th

e
h
o
ri

z
o
n
ta

l
li
n
e

th
a
n

th
e

le
ft

h
a
n
d

p
o
in

ts
,

b
u
t

th
is

is
n
o
t

th
e

c
a
se

.

1

10

20

30

40

50

60

70

76

11020304050607076

E
du

ca
to

r A
cc

or
d

R
an

k

Years as Educator Rank

1

10

20

30

40

50

60

70

76

11020304050607076

E
du

ca
to

r A
cc

or
d

R
an

k

Years Teaching Intro Programming Rank

1

10

20

30

40

50

60

70

76

11020304050607076

E
du

ca
to

r A
cc

or
d

R
an

k

Years Teaching Intro Programming in Java Rank

(a) (b) (c)

Figure 4: Graphs showing ranks for educator accord (i.e. their agreement with the Blackbox data) against
ranks for (a) the years they have been an educator, (b) the years they have taught introductory programming
and (c) the years they have taught introductory programming in Java. Ranks are plotted such that the
highest values (and thus lowest ranks) are towards the top or right of the graph. Perfect agreement would be
a diagonal line from bottom-left to top-right; perfect disagreement would be a diagonal line from top-left to
bottom-right. Note that for (a), only 52 of the 76 educators in our sample answered this question (whereas
all answered for (b) and (c)). Rank correlations were insignificant in all three cases.

5. DISCUSSION
The answers to our research questions from section 1 are:

• Educators’ views form only a weak consensus about the
frequency of the specified student Java mistakes.

• Educators’ views of mistake frequency have only a moder-
ate match (“accord”) with the observed behaviour of stu-
dents in a large-scale multi-institution data set.

• This accord has no association with educator experience.

A graphic displaying most of the study results together
can be found in Figure 5.

5.1 Inter-Educator Agreement
Our implicit expectation when beginning this research was

that there would be a reasonably strong consensus among
educators as to the frequency of Java mistakes. The low level
of agreement between educators was a surprise – and even
more so because years of experience (generally, or within
Java) made no apparent difference to the ratings assigned
by the educators (see Figure 5 for a visualisation of these
results). This result colours some of the interpretation of
the results regarding agreement between the educators and
Blackbox: if educators don’t agree among each other, it is
unlikely that there would be very strong agreement between
the educators and the Blackbox data.

Our results show that educator opinions about student
mistakes are not very consistent across educators. There
are several possible explanations for this. One explanation
is that the educators are all correct, in their own context:
each educator may be correct about their own classroom, but
their opinions do not generalise to other classrooms. Further
work would be needed to investigate this, either directly by
getting educators to tag their own students in the data set,
or indirectly by breaking down the mistakes by student and
comparing the variance between students to the variance
between educator ratings.

Another explanation for the lack of generalisability is that
looking at frequencies of Java mistakes is the wrong level of
abstraction to find common ground among educators. If ed-
ucators talked about programming features at a higher level
(e.g. the conceptual difficulties that students have with loop-
ing, or variables) then we might find much more agreement
and consensus that looking at the lower level aspects of the
frequency of specific syntax and semantic mistakes. There
is a reasonable argument to be made that educators’ knowl-
edge of mistake frequencies is not important in understand-
ing student difficulties. However, it remains the case that
educators do not form a consensus. This may be because
educators do not form a consistent memory of mistake fre-
quency, or generalise inaccurately from their own experience
to larger bodies of students.

5.2 Student Mistakes
Our results from the Blackbox data provide a large sample-

size result for the frequency of different Java errors, dis-
tinct from compiler error messages (shown in Table 1). Mis-
matched brackets – a syntax error – was the most frequent
type of error, but otherwise the semantic errors tended to
appear higher than the syntax errors. We should not over-
interpret this result, as it is greatly affected by which mis-
takes we included in the study – but we wonder if this hints
that semantic errors are a more serious challenge than syntax
errors. Recent research has suggested that Java has syntax
which is not much better than an arbitrary choice of syntax
for learning [18], but perhaps the syntax of a language does
not matter as much as semantics. Further work could inves-
tigate whether the frequency of these mistakes change over
time (i.e. do students make fewer syntactic mistakes over
time?), but that is beyond the scope of this paper. We also
note that some of the errors which we took from Hristova et
al. [9] are very infrequent, so their list of mistakes may not
be suitable when considering just the most frequent Java
mistakes.

5.3 Educator-Student Accord
Our examination of educators’ frequency rankings against

frequency rankings from the Blackbox data set (termed ac-
cord) showed a significant but moderate correlation of ρ =
0.514. As previously mentioned, given the weak levels of
consensus among educators, it would not have been possible
to achieve very high levels of correlation6. Still, it means
that for any given educator from our sample, the expected
correlation to the real data would be 0.514, which is lower
than we had expected. If an educator states that from their
experience, students always make a certain mistake in Java,
our results must suggest to be wary of such a claim.

A visual inspection of figure 5 shows the big “hits and
misses” from the educators. Mistake B, the use of == to
compare strings, was clearly overrated by most, as was mis-
take E (spurious semi-colons after if, for and while). Mis-
takes J (forgetting parentheses for a method call) and Q
(incompatible types when assigning a method call result)
were also overrated in terms of frequency. Of course, some
of these mistakes are relative to the use of the underlying
constructs: if students wrote fewer method calls than edu-
cators expected, this would explain the lower frequency of
mistakes in making method calls. Similarly, the frequency of
mistake R (not implementing all methods from an interface)
will depend heavily on the frequency with which the sampled
students implement interfaces (a relatively advanced feature
for novices).

The mistakes in this study were automatically detected
using a set of tools. If the tools were not sufficiently accurate
in picking up mistakes, this could have affected our measure
of educator accord. To this end, we have made the source
code available (see section 3.3) in case further investigation
is warranted. As well as the tool, the choice of mistakes
has an effect on educator accord. Looking at Table 1, it
is clear that some of the mistakes (especially L, F, H and
G) are particularly low frequency, in contrast to Hristova
et al.’s [9] aim to find the most common errors. Figure 5
confirms that, especially for G, educators predicted these low
frequency items consistently – if G were excluded from the
analysis, educator accord would reduce. As an illustration,
if mistakes L, F, H and G are removed from the analysis,
the average educator accord would drop from 0.514 to 0.311
– a much weaker level of accord. A more principled search
for the top mistakes, and accurate classifiers for these, may
provide a better picture of educator accord, but this may
decrease educator accord rather than increase it. Educators
seem to be accurate at identifying rare mistakes as rare but
not at comparing higher frequency mistakes.

5.4 Affect of Experience on Educator-Student
Accord

Our analysis, depicted visually in Figure 4, found that
there was no effect of educator experience (as measured by
years as an educator, years teaching introductory program-
ming in any language, or years teaching introductory pro-
gramming in Java) on educator accord. That is: no matter
how many years the educator had been teaching, it made no

6As an illustration, if the Blackbox data had had frequencies
ranked in order of the average ranks assigned by the educa-
tors, the average accord would have been 0.692. Although
this is not necessarily the mathematical maximum of the av-
erage correlation, it can be used as an informal indicator of
the highest levels of accord that could have been achieved.

effect on their accuracy in predicting the frequencies from
the Blackbox student data. This is a very surprising result.
Our expectation had been that experience would surely pro-
vide some sort of increase to accuracy.

The results show that experience has no effect on the task
of rating mistakes by frequency. Further work could inves-
tigate more closely: for example, some tertiary educators
lecture but do not supervise programming classes directly,
so this could have an effect on accuracy. However, an ini-
tial analysis of our results suggests this may not be the issue:
the average accord of educators who had taught in secondary
education was 0.509, while the average accord of educators
who had taught only in tertiary education was 0.516.

If one assumes that educator experience must make a dif-
ference to educator efficacy, then this would imply that rank-
ing student mistakes is therefore unrelated to educator effi-
cacy. However, work from Sadler et al. [15] in physics found
that “a teacher’s ability to identify students’ most common
wrong answer on multiple-choice items... is an additional
measure of science teacher competence.” While picking an-
swers to a multiple choice question is not exactly the same as
programming mistakes, there is a conflict here – either the
Sadler et al. result does not transfer and ranking common
student mistakes is not a measure of programming teacher
competenece, or experience has no effect on teacher compe-
tence. The first option seems more likely.

6. CONCLUSIONS
Our study investigated educators’ opinions about the fre-

quency of eighteen mistakes in Java among programming
novices. Our first finding was that educators have only a
weak consensus about these frequencies. It remains possible
that these frequencies are contextual, and thus each educa-
tor is correct for their own students. Regardless, this sug-
gests that in cases where educators communicate with each
other (e.g. via online communities), talking about which
mistakes student make will not provide much agreement.
Our further result that educators are not very accurate com-
pared to a large data set of students suggests that educators
are also not accurate about the frequencies of these mistakes,
so any claims that“students always make mistake X”are un-
likely to be accurate. Of course, this may just require that
a different level of discourse is required: educators may still
be accurate about the cause of mistakes and student’s con-
ceptions of the mistakes, but just not about the frequency
of such mistakes.

Our most surprising result was that an educator’s level
of experience (as measured by years as an educator, years
teaching introductory programming in any language, or years
teaching introductory programming in Java) had no effect
on how closely the educator’s frequency rankings agreed
with those from the Blackbox data. A strong interpreta-
tion of this result would be that experience has little effect
on educator efficacy. However, it must be remembered that
this task (ranking mistakes by frequency) is not necessar-
ily aligned with educator efficacy – this result only shows
that experience has no effect on ranking mistake frequency.
Instead, this result may indicate that such a task is there-
fore not representative of educator efficacy (which we would
expect to increase with experience).

Our data also provides frequencies from a large data set
(over 100,000 students) for our chosen eighteen novice mis-
takes. Given the lack of agreement between educators and

this data (see figure 5), we can therefore state that the re-
sults will be surprising to most (and that any educators who
claim they are“exactly as expected”were not participants in
our study!). Mismatched brackets – a syntax error – were the
most frequent type of mistake, and otherwise many of the
top mistakes were not syntactic. Notable mistakes that were
mispredicted by our sample of educators (and thus proba-
bly the most surprising results) were as follows. Mistake
B, the use of == to compare strings, was clearly overrated
by most, as was mistake E (spurious semi-colons after if, for
and while). Mistakes J (forgetting parentheses for a method
call) and Q (incompatible types when assigning a method
call result) were also overrated in terms of frequency. One
hypothesis is that educators overrated in terms of frequency
those mistakes which students have most trouble with un-
derstanding, or were likely to spend most time on fixing. We
aim to investigate this possibility in future work.

Acknowledgements
The authors are grateful to Kristina Dietz for her help with
the statistical analysis methodology, to Sally Fincher for her
advice on the research design, to Davin McCall for his knowl-
edge of the area, and to Michael Kölling and Ian Utting for
their observations about untested educator folk wisdom that
inspired the research.

7. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. An

analysis of patterns of debugging among novice
computer science students. In Proceedings of the 10th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’05, pages 84–88, New York, NY, USA, 2005. ACM.

[2] Y. Ben-David Kolikant. Computer science education
as a cultural encounter: a socio-cultural framework for
articulating teaching difficulties. Instructional Science,
39(4):543–559, 2011.

[3] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 223–228, New York,
NY, USA, 2014. ACM.

[4] R. Cadenhead. Sams Teach Yourself Java in 21 Days.
Pearson Education, 2012.

[5] P. Denny, A. Luxton-Reilly, and E. Tempero. All
syntax errors are not equal. In Proceedings of the 17th
ACM Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’12, pages 75–80, New York, NY, USA, 2012. ACM.

[6] T. Dy and M. M. Rodrigo. A detector for non-literal
Java errors. In Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research, Koli Calling ’10, pages 118–122, New York,
NY, USA, 2010. ACM.

[7] C. Hoisington. Android Boot Camp for Developers
using Java. Cengage Learning, 2012.

[8] D. C. Howell. Statistical Methods for Psychology.
Duxbury, fifth edition, 2002.

[9] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors

for introductory computer science students. In
Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’03, pages
153–156, New York, NY, USA, 2003. ACM.

[10] J. Jackson, M. Cobb, and C. Carver. Identifying top
Java errors for novice programmers. In Frontiers in
Education, 2005. FIE ’05. Proceedings 35th Annual
Conference, Oct 2005.

[11] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73–84, New York, NY,
USA, 2006. ACM.

[12] M. Kendall. Rank Correlation Methods. Edward
Arnold, fifth edition, 1990.

[13] S. B. Lyerly. The average spearman rank correlation
coefficient. Psykometrika, 17:421–428, 1952.

[14] D. McCall. Improving the experience of novice
programmers – language and tools. Technical report,
University of Kent, 2013.

[15] P. M. Sadler, G. Sonnert, H. P. Coyle, N. Cook-Smith,
and J. L. Miller. The influence of teachers’ knowledge
on student learning in middle school physical science
classrooms. American Educational Research Journal,
50(5):1020–1049, 2013.

[16] E. Soloway and S. Iyengar, editors. Empirical Studies
of Programmers: Papers Presented at the First
Workshop on Empirical Studies of Programmers.
Intellect Books, 1986.

[17] J. C. Spohrer and E. Soloway. Novice mistakes: Are
the folk wisdoms correct? Commun. ACM,
29(7):624–632, July 1986.

[18] A. Stefik and S. Siebert. An empirical investigation
into programming language syntax. Trans. Comput.
Educ., 13(4):19:1–19:40, Nov. 2013.

[19] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice Java programmers through
the analysis of online protocols. In Proceedings of the
Seventh International Workshop on Computing
Education Research, ICER ’11, pages 85–92, New
York, NY, USA, 2011. ACM.

[20] W. L. Taylor. Correcting the average rank correlation
coefficient for ties in rankings. Journal of the American
Statistical Association, 59(307):872–876, 1964.

[21] W. L. Taylor and C. Fong. Some contributions to
average rank correlation methods and to the
distribution of the average rank correlation coefficient.
Journal of the American Statistical Association,
58(303):756–769, 1963.

[22] P. van der Linden. Just Java 2. Pearson Education,
2004.

	Introduction
	Related Work
	Observing Student Errors
	Educators' Opinions

	Method
	Student Mistakes
	Educators' Survey
	Inter-Educator Agreement

	Student data
	Educator and Student Agreement
	Educator and Student Agreement – Effect of Experience

	Results
	Educators
	Agreement Among Educators
	Student Mistakes
	Educator and Student Agreement
	Educator and Student Agreement – Effect of Experience

	Discussion
	Inter-Educator Agreement
	Student Mistakes
	Educator-Student Accord
	Affect of Experience on Educator-Student Accord

	Conclusions
	References

