
Position Paper: Lack of Keyboard Support Cripples
Block-Based Programming

Neil C. C. Brown
School of Computing

University of Kent
Canterbury, UK
nccb@kent.ac.uk

Michael Kölling
School of Computing

University of Kent
Canterbury, UK
mik@kent.ac.uk

Amjad Altadmri
School of Computing

University of Kent
Canterbury, UK

aa803@kent.ac.uk

Abstract—Block-based programming is very popular with
beginners, but it has failed to gain traction among intermediate
and expert programmers. The mouse-centric interfaces typically
found in block-based programming environments make edit
interactions (especially in large programs) tedious and awkward.
We propose that adding keyboard support is a key step to ex-
tending the applicability of block-based programming ideas and
would allow their use by intermediate and expert programmers,
extending some of their benefits to new user groups. We describe
an implementation of this idea, ‘frame-based programming’,
which leads to a number of benefits in error avoidance and edit
efficiency.

I. INTRODUCTION

Block-based programming has gained significant popularity
in the last ten years. The success of systems such as Scratch,
Snap, StarLogo TNG, Blockly, App Inventor, Alice and many
more demonstrate the great interest in this programming style,
especially for young age groups (pupils between eight and
twelve years old). This success, however, has been restricted
to these young learners and is not mirrored in older age
groups. It is interesting to consider why this is. After all,
many of the advantages that block-based programming offers
– easier manipulation, freedom from syntax errors, reduced
memorisation of syntax and commands – would be of benefit
to all programmers.

The reluctance of more experienced or ambitious program-
mers to adopt this programming style is rooted in a number of
fundamental limitations of block-based programming systems,
most of all those affecting the ease of manipulation and
systematic organisation of the program. In this paper, we argue
that the lack of keyboard support for program manipulation
in block-based programming systems causes many of the
weaknesses that prevent scaling to more proficient use. We
describe how adding support for keyboard controlled manipu-
lation can remove many of the hurdles and make some of the
advantages of block-based systems available to more proficient
programmers.

Our design of this novel interaction method, called frame-
based programming, not only improves on block-based sys-
tems, but may also lead to increased efficiency for expert
programmers compared to working with text-based systems.

II. ADVANTAGES OF BLOCK-BASED PROGRAMMING

Block-based programming introduces several significant ad-
vantages over text-based programming which have the poten-
tial to provide benefits not only for young learners, but for
all programmers. The pre-determined, uneditable structure of
the blocks prevents syntax errors. In text-based programming,
keywords of the language as well as syntactic structures, such
as brackets, parentheses and punctuation, have to be recalled
and can be mistyped or mismatched. Slips and small syntax
errors distract and slow down developers and require signifi-
cant mental effort for novice and intermediate programmers.
In block-based environments, these errors are impossible to
make, and no mental or manual effort has to be expended in
memorising, recalling or typing these structures.

Some type errors are also prevented: many blocks mis-
matched in type or semantics cannot be snapped together,
avoiding potential errors that otherwise would have to be
detected and fixed. For example, an expression block cannot
be inserted where a statement block is expected. While the
severity of these errors decreases with increasing proficiency
of the programmer, it is obvious that preventing these errors
entirely is preferable to allowing such mistakes.

Blocks make it easier and quicker to create and manipulate
entire syntactic constructs. Adding a fully-formed if-statement
or a loop using a single gesture is faster than typing the whole
construct as text. A statement can easily be dragged as a single
entity and dropped into a new, valid location. In a text-based
environment, the statement must first be selected, either using
a combination of keyboard shortcuts or by selecting with the
mouse, and then dropped at a carefully chosen location. Both
of these parts are more tedious and error prone than with
blocks: When selecting, it is easy to miss part of a compound
statement, or to accidentally include or omit trailing line break
characters. When dropping the selection, it may be placed into
syntactically invalid locations. Blocks have no such issues, and
deletion is similarly faster and less error-prone.

Block-based editors also remove a lot of lower-level tedium
or trivial style decisions. There are no issues regarding depth
of indentation, whether to use tabs or spaces, or the correct
placement of curly brackets. Many other similar style issues
become inapplicable.To appear in Blocks and Beyond 2015 c©2015 IEEE



Fig. 1. Complex expressions in Scratch are written by dragging many
individual blocks together. This expression is composed of eight blocks.

Many of these advantages would benefit proficient program-
mers as well as beginners. However, block systems as a whole
do not scale sufficiently to proficient programmers’ style of
work and size of programs. For anyone but beginners, the
limitations of block-based systems outweigh their advantages.

III. LIMITATIONS OF BLOCK-BASED PROGRAMMING

One of the main limitations in block-based programming
is the speed of entry and manipulation. Although it is easy to
drag blocks, it can also be laborious and time-consuming. Per-
forming a relatively small calculation such as the hypotenuse
of a triangle (e.g. for the distance between two objects),√
x× x+ y × y involves assembling eight blocks (as shown

in Figure 1). Each block requires a sequence of gestures:
finding the appropriate palette, selecting and dragging of
the prototype, to dropping at the target location. In a text-
based editor, the equivalent code entry requires 13 keypresses,
representing significantly less interaction effort. Text-based
approaches to formulas have been shown to be more usable
than purely block-based approaches [1].

The lack of expressive flexibility in what is being dragged
also causes slower manipulation. There is no easy way to
select, for example, two or more adjacent blocks in the body
of a control structure and drag them elsewhere. The contents
must be unpicked by individual drag gestures, or a complex
set of drags to detach and subsequently re-attach the trailing
blocks which the user did not wish to manipulate.

The effort required to create or edit a program is directly
related to its size. Larger programs require more entry and
manipulation, and slowly the balance tips: text-based pro-
gramming becomes the easier medium to write and maintain
large programs. This is the key aspect which limits the use
of block-based programming by intermediate and professional
programmers: the ease is outweighed by the lack of speed.
Here, ease refers to the low cognitive load and motor skills
required to plan and execute the operation, while speed is how
long the operation takes. For example, entering the expression
(1+2)×(1+2) into a calculator is easy, but for those proficient
in arithmetic it is faster to calculate the answer mentally.

Block-based programming also tends to have poor support
for code navigation. While the free placement of program
code segments (e.g. event handlers) in many block-based
environments is very flexible, it often leads to disorganisation.
Navigation of code written by other people – an activity rarely
performed by novices, but frequently by experts – is not well
supported. Key navigation of larger systems, such as jumping
(both ways) between the usage and definition of an entity,
is expected in professional programming environments but
usually unsupported in block systems.

Fig. 2. The frame cursor is a thin horizontal blue line which occupies a small
vertical space between frames, in the same way that a text cursor occupies a
small horizontal space between characters.

IV. FRAME-BASED PROGRAMMING

Frame-based programming is our own design of source
code manipulation, combining aspects of blocks and text-based
programming. One of its significant features is a combination
of block-like entities – frames – with support for keyboard
entry and manipulation. Keyboard control encompasses two
elements: statement-level key support via a frame cursor, and
expression-level support via slots.

A. Frame Cursor

Entering a new frame (akin to a statement-level block)
requires two choices from the user: which frame to add,
and where in the program code to add it. The former is
straightforward, with different frames bound to different keys.
The latter is achieved using a frame cursor. Just as textual entry
on a computer involves a text cursor (or caret) indicating where
the typed characters will be inserted, frame entry involves a
frame cursor indicating where a new frame will be added.

The frame cursor occupies a small vertical space between
frames (see Figure 2) and can be moved using the cursor
keys. There are further shortcuts and modifiers: for example,
pressing ctrl-up/down moves the cursor only at the current
scope level, skipping the body of compound statements or
entire methods. The frame cursor also allows selection: The
user can use the shift modifier to select a contiguous block
of frames, which can then be moved via mouse-dragging – or
cut, copied, or pasted using standard keyboard shortcuts. Other
keys perform logical actions: backspace deletes the current
selection if there is one, or otherwise deletes the previous
frame. The cursor can also be placed through clicking the
mouse, and dragging can be used to create a selection.

There is only ever one cursor on screen: either a text
cursor in a slot (see below) or a frame cursor. Because of
this distinction, we can use single-key shortcuts for inserting
frames when the frame cursor is selected. Pressing ‘i’ inserts
an if statement without the need for further modifiers. This
makes entry of frames fast and convenient. To add a while-
true loop, the user only needs to press five keys: w t r u
e. The initial ‘w’ creates a while loop and focuses the slot for
the condition, and then ‘true’ is typed into the slot.



B. Slots

In block-based programming, expressions are represented
by blocks, with all the manipulation disadvantages discussed
above. In frame-based programming, we allow expressions
(e.g. conditions in loops or the right-hand side of assignments)
to be entered textually with the keyboard.

Textual entry speeds up the creation of expressions, but it
also re-introduces the possibility of syntax errors. The text
is, however, not entirely free-form; paired symbols, such as
brackets and quotes, are treated as a single entity. When
the user enters an opening bracket, the closing bracket is
automatically created at the same time. These brackets are
paired forever: deleting one also deletes the other, and they
can never nest incorrectly. Thus, some errors that may occur
in traditional text editors are prevented.

Other tools typically provided in text-based environments
are also provided in the frame editor: code completion, au-
tomatic corrections for mis-spelt variable names, real-time
error annotations, etc. This allows the frame editor to support
professional workflows and program sizes.

C. Navigation Improvements

Frame-based programming uses a structured presentation
and layout for code much more similar to text than to the
arrangement in block-based systems. All code is laid out
vertically in classes, rather than freely placed on a larger
canvas for each class. Specific segments in the code (such as
field declarations, constructors, and methods) have a specified
order and location. Navigation between elements (such as
moving focus to the declaration of a variable, or showing
the locations of uses of a variable) is supported via menu
commands and keyboard shortcuts. The view pane of a frame-
based class automatically scrolls to keep the frame cursor in
view. Thus, the keyboard can be used to navigate the source
code, by moving the frame cursor up and down the class.

V. FRAMES VS. STRUCTURED EDITING

Frame based programming is a specific variation of structure
editing, an idea decades old, with a period of specific popular-
ity and interest in the late 1980s and early 1990s. All structure
editors have in common the principle that edit operations
are performed on the underlying syntactical structure, not the
textual representation on screen, and the goal of avoiding entry
of many syntactically invalid programs.

Relevant examples of structure editors include GNOME [2],
which used menus for entering low-level content (similar to
our slots) with entry restricted to previously declared values,
and Boxer [3], which used “boxes” instead of pure text – a
construct that shares some aspects with our frames.

Existing structure editors managed to prevent many errors,
but typically locked users into fixed workflows. Syntactically
or semantically incorrect code could not be entered, even
temporarily, preventing various methods of development and
legitimate editing styles. This overly restrictive nature of many
of the systems made them unpopular and led to failure to gain
traction in the programming community.

Task Scratch Alice NetBeans Frames
Insertion 4.9 6.6 5.1 1.6
Modification 5.6 7.1 5.5 5.0
Deletion 5.4 2.6 7.8 2.4
Movement 5.5 3.1 6.0 4.8
Replacement 9.8 8.9 5.1 2.3

TABLE I
MEAN TIMES IN SECONDS (1 D.P.) FOR PROGRAM MANIPULATION TASK

TYPES [4]. LOWER IS BETTER, BEST IN EACH ROW IS BOLDED.

In our frame editor, we do not prevent entry of many
incorrect code segments, choosing instead to passively indicate
erroneous code (via a red underline) without blocking the
programmer from additional manipulations. Thus, we hope to
provide better support while maintaining flexibility.

VI. INITIAL RESULTS

An initial study evaluating the effectiveness of frame-based
programming, using an earlier prototype of our editor [4],
provides some first insights into its potential. The study
compares cognitive models of different program modifications
(insertion, modification, deletion, movement and replacement)
in a prototype frame-based editor with various other systems,
including Scratch, Alice, and NetBeans. Cognitive modelling
computes a measure of task time by recording and analysing
keystroke level interactions (such as key presses and mouse
clicks) as well as “mental” operations (such as eye movement
and reading time). The study was performed using CogTool,
a software system that automates the recording and analysis
of interaction sessions. The prototype frame-based editor was
found to be the fastest in four out of five categories. Relevant
results are reproduced here in Table I.

VII. CONCLUSION

The benefits of block-based programming have not yet
been transferred to intermediate or professional programmers
because the mouse-centric user interfaces make working with
large programs too difficult. By combining aspects of block-
based programming with keyboard support (along with several
other innovations beyond the scope of this brief paper), frame-
based programming removes the obstacles and extends those
benefits to more proficient programmers.

REFERENCES

[1] R. Koitz and W. Slany, “Empirical comparison of visual to hybrid
formula manipulation in educational programming languages for
teenagers,” in PLATEAU ’14. ACM, 2014, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/2688204.2688209

[2] P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution of novice
programming environments: The structure editors of carnegie mellon
university,” Interactive Learning Environments, vol. 4, no. 2, pp. 140–158,
1994. [Online]. Available: http://dx.doi.org/10.1080/1049482940040202

[3] A. A. diSessa, “Twenty reasons why you should use Boxer (instead of
Logo),” in Learning & Exploring with Logo: Proceedings of the Sixth
European Logo Conference, M. Turcsnyi-Szab, Ed., 1997, pp. 7–27.

[4] F. McKay and M. Kölling, “Predictive modelling for HCI problems in
novice program editors,” in BCS-HCI ’13. BCS, 2013, pp. 35:1–35:6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2578048.2578092


