
Blackbox: A Large Scale Repository of Novice
Programmers’ Activity

Neil C. C. Brown, Michael Kölling, Davin McCall and Ian Utting
School of Computing

University of Kent
Canterbury, Kent, UK

{nccb,mik,dm391,iau}@kent.ac.uk

ABSTRACT
Automatically observing and recording the programming be-
haviour of novices is an established computing education
research technique. However, prior studies have been con-
ducted at a single institution on a small or medium scale,
without the possibility of data re-use. Now, the widespread
availability of always-on Internet access allows for data col-
lection at a much larger, global scale. In this paper we re-
port on the Blackbox project, begun in June 2013. Black-
box is a perpetual data collection project that collects data
from worldwide users of the BlueJ IDE – a programming
environment designed for novice programmers. Over one
hundred thousand users have already opted-in to Blackbox.
The collected data is anonymous and is available to other
researchers for use in their own studies, thus benefitting the
larger research community. In this paper, we describe the
data available via Blackbox, show some examples of analyses
that can be performed using the collected data, and discuss
some of the analysis challenges that lie ahead.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Experimentation

Keywords
Blackbox, BlueJ, data collection, programming education

1. INTRODUCTION
Learning to program is a central challenge of comput-

ing education. As programming is performed on a com-
puter, students’ programming behaviour can be automati-
cally monitored – an idea decades old [8]. There have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 5–8, 2014, Atlanta, GA, USA.
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538924.

many prior small and medium scale studies monitoring pro-
gramming behaviour at single institutions (see section 3),
but the widespread availability of Internet access means that
large-scale cross-institutional studies can be easily run.

The authors develop and maintain BlueJ, a Java IDE de-
signed for beginners. BlueJ has over 1.5 million users each
year, and is used widely in the first year course at universities
in many different countries. This paper describes the Black-
box data collection project, which draws participants from
the worldwide BlueJ user pool and records their interactions
with the IDE and the source code that they write. This
project provides gigabytes of collected source code, which
we are making available to other researchers to benefit the
computing education research community. This is not a sin-
gle completed study ; rather, it is a perpetual data collection
project that will continue collecting data and serve as a basis
for a potentially wide variety of future studies.

This paper is split into two halves. In the first half, we
look at the background of BlueJ and data collection projects
(sections 2 and 3), then examine the research issues of the
Blackbox project (section 4) and present design decisions
and initial outcomes (section 5). In the second half, we show
some small examples of the analyses that can be performed
with the Blackbox data (section 6), before offering discussion
on the challenges in analysing this kind of data (section 7).
Our contributions include:

• A discussion of research and analysis issues surround-
ing projects of this type (sections 4 and 7).

• Initial outcome statistics for the project (section 5).

• Several small analyses, including a replication of pre-
vious results (section 6).

• Information for other research groups on how to gain
access to this data set for their own research projects.

2. BLUEJ
BlueJ is a programming environment designed to be used

by those learning object-oriented programming in Java. It
was first released in 1999, and now has a large worldwide
user base. In 2012, BlueJ was invoked at least 15 million
times, by a total of over 1.8 million users; whenever BlueJ is
loaded, it attempts to make a brief one-off connection to a
central server (which we term a “phone-home”) to report the
BlueJ version, Java version, and OS version. This connec-
tion will not always be successful; users may temporarily or
permanently lack Internet access or have firewalls (on their

http://dx.doi.org/10.1145/2538862.2538924

machine, local network, or whole country) that prevent the
connection. Therefore this number only gives a lower bound
on the total amount of BlueJ use – but, pertinent to this
paper, it gives an accurate reflection of the number of BlueJ
users where BlueJ can connect to a remote server.

3. PRIOR WORK
There have been many studies, using many approaches,

of students’ behaviour in introductory programming classes.
Here we will restrict ourselves to discussing those that fo-
cused on their interactions with their programming environ-
ment, and the resulting program source code.

Thomas et al [9] recorded 4.7 million actions over a six-
week period in 2003 from 141 students using an Ada IDE,
but these were very low-level events (such as mouse clicks
and key presses, captured from the GUI framework) and
data-cleaning proved to be a significant problem, although
they did also establish the viability of using such data to
answer questions formulated after the data was gathered.

In 2005, Ahmadzadeh et al [2] collected much coarser-
grained data (including source code) from 192 students in
the School of CS & IT at the University of Nottingham,
mostly focused on compilation errors encountered by stu-
dents whilst using the JCreator environment.

Edwards et al [4] collected result-focused data from 1101
students over a five-year period. The data gathered was
students’ work-in-progress as they submitted their evolving
programs for testing by, and feedback from, the Web-CAT
tool. They eventually captured 89,879 submissions from two
courses using Java and one using C++.

Jadud [6] and Fenwick et al [5] have recently used bespoke
extensions to the BlueJ IDE to capture student interactions
at an intermediate granularity, capturing Java compiler in-
put and output at every invocation. Jadud captured 42,000
events from 186 students over two years, and Fenwick et al
captured 55,000 from 110 students in a single year.

The questions addressed by these studies have ranged
from compilation and editing behaviour to time-on-task. In
all cases except Thomas et al, the particular research ques-
tions to be addressed were part of the design of the data-
gathering apparatus, but in many cases the data proved
amenable for use in answering other questions which be-
came apparent only after the data had been gathered. Some
of the studies have recorded very large numbers of events,
some have involved reasonably large numbers of students,
but all published cases involved students at a single insti-
tution. The Blackbox data differs from these prior studies
in several ways, but two are particularly significant: the
amount of students involved (and data collected) is larger
by several orders of magnitude, and the data is shared with
other researchers.

There has also been much work in the analysis of large
bodies of program code, e.g. the Mining Software Reposi-
tories conference [1], but it is primarily focused on profes-
sional or open source repositories at each commit, rather
than learners’ behaviour at each edit and compilation.

4. RESEARCH ISSUES
The technical challenges of the Blackbox project are fairly

straightforward and well understood. The more difficult is-
sues relate to the ethical and research design side of the
project; in this section we will explain the pertinent issues.

4.1 Identifiable Data
We wanted to ensure that participants would suffer no

negative consequences from participating in the data collec-
tion. We could have asked participants demographic infor-
mation (age, level of experience, etc)1, but collecting this
data places a responsibility on us to safeguard the data, al-
low individual withdrawal from the study and so on. Manag-
ing this for hundreds of thousands of users seemed untenable.
Thus we made the decision to keep the data anonymous, as
described in the next section.

It is possible for individual researchers to configure Black-
box to identify their own students for the purpose of a study,
or to extend the data collected to include identifiable or de-
mographic information – this is discussed in section 4.6.

4.2 Anonymisation
The two main places where identifiable information might

be found in the collected data are the local path to the
project and the source code.

Paths to BlueJ projects often feature an identifying user-
name, either locally (C:\Users\john\Documents\proj1), or
on a university network (\\store\js123\proj2). To miti-
gate this, the client transmits only the last directory in the
path (above, proj1 and proj2) and a hash of the full path.
This allows the same project to be identified across sessions,
but stops the identifying paths from being sent to the server.

Anonymising source code is a difficult challenge. Identi-
fying information can appear in comments, string literals,
and even names of variables and methods. Strong anonymi-
sation could be achieved by blanking all comments, strings,
and by renaming all variables and methods (e.g. by hash-
ing). However, this loses much useful information; the names
of methods (e.g. getHeight) can convey information, com-
ments can be useful for analysis and so on. Therefore, Black-
box removes only the comment that occurs before a class
header. This is where author names are usually entered,
so this should reasonably anonymise the code without los-
ing other useful context. We explain in the information to
participants that this level of anonymisation will take place.

4.3 Data Design
One difficulty with the Blackbox project was deciding ex-

actly which data to collect. While many studies collect data
with a single analysis in mind, the Blackbox project is in-
tended to support many different researchers for different
purposes (much like a census). In an attempt to ensure that
the data collected by the Blackbox project was useable by
other researchers, we sought to engage interested parties at
the SIGCSE 2012 [7] and ICER 2012 [11] conferences to ask
for feedback on our design.

The initial design was primarily guided by the features of
the BlueJ IDE, and this was then refined based on feedback
received during these sessions (e.g. we now collect more
fine-grained editing data than initially envisaged). We were
keen to pick the right level of granularity for data collec-
tion. We believed that collecting data at a very low level
(e.g. click-streams, with data on mouse movements and ex-
act keypresses) would be too voluminous and too difficult
to analyse. Instead, we work at a higher level, recording
line-edits to source code, and IDE actions rather than the
mouse/key movements that triggered them.

1Although there would have been little motivation for par-
ticipants to supply this information accurately.

4.4 Data collected
The data collected for the Blackbox project includes the

following:

• A persistent unique identifier, which is assigned on opting
in and persists across sessions, allowing some longitudinal
analyses.

• Start and end times of programming sessions.

• Use of all IDE tools, such as editing, compiling, execution,
instantiation of objects, interactive method invocations,
runs of unit tests, use of the debugger, use of source repos-
itories, use of the codepad, etc. In all cases, event records
include time stamps and relevant details (e.g. method
invocations include parameters and return values, com-
pilation events include compilation outcomes/errors, unit
test runs include test results).

• Editing behaviour. This is collected at source line level:
every time a user edits a line of code and the cursor then
leaves that line, an edit event is recorded. Multiple con-
secutive character edits within the same line are thus col-
lapsed into a single event.

• An optional experiment and participant identifier – see
section 4.6.

4.5 Data Caveats
Although the Blackbox data is large scale, there are var-

ious notable restrictions in its utility. One obvious restric-
tion is that the data specifically concerns using Java within
BlueJ. BlueJ is often taught in an objects-first way, eschew-
ing Java’s main method. Thus it is a biased subset of the
ways in which Java is taught. Another obvious restriction is
that we do not know what the user was intending to do (e.g.
their current task) or their thought processes at the time; we
can only observe the resulting changes to the source code.

The data in Blackbox comes with a persistent unique iden-
tifier (a randomly assigned ID for each participant) but no
further identifying information. It is possible to track a user
longitudinally, but nothing will be known about that user.
They may have years of Java experience and be using BlueJ
for prototyping, they may be an instructor preparing mate-
rials for a lecture, or they may be a beginner who has never
programmed before. We believe that the latter is the most
prevalent case, but there is no way to confirm this for an in-
dividual user from the data. Instead we must rely on heuris-
tics; for example, it may be reasonable to assume that a user
who is seen first in September and never again after the fol-
lowing December/January was taking a single-semester Java
course. In contrast, a user seen over the course of several
years is likely to be an instructor.

The user tracking in BlueJ uses an identifier stored in the
client’s BlueJ profile. If two people use BlueJ on the same
machine with the same profile, they will appear as one user.
We believe this case is relatively rare, unlike the reverse: if
one person uses BlueJ on multiple machines with different
profiles (e.g. a home machine, a laptop and a university
machine), they will appear as multiple users. There is no
simple way to track this. Instead, they must be viewed as
multiple users with gaps in their history. Most users are
likely to have some gaps in their data recording history, due
to switching machines, or their Internet connection breaking
during a BlueJ session and so on. Most gaps can be identified
by comparing the state of a project’s source code between
the end of one session and beginning of the next.

4.6 Local studies and demographics
Blackbox supports local and extended studies in two dif-

ferent ways. The first use case is a researcher who wishes to
perform a study only on their home students. For this pur-
pose, an experiment identifier can be generated and added
to the configuration information in BlueJ. This identifier
can be added by an administrator for a complete installa-
tion (e.g. all machines at an institution), or individually
by a BlueJ user. Using this identifier, researchers can then
identify users from only their own experiment. Experiment
identifiers cannot be extracted from the database and are
effectively non-guessable, so researchers cannot identify stu-
dents from other institutions.

The second use case is a researcher who wishes to collect
demographic or personal data about their subjects, for ex-
ample to relate programming behaviour to prior experience,
age, gender, etc. For this purpose, a participant identifier
can be set in the Blackbox configuration. A researcher could
generate participant identifiers and ask students to enter
these in their BlueJ preferences. The researcher could then
use the same identifiers to collect additional data relating to
demographic or personal information.

It is worth emphasising that in this case the researcher is
responsible for obtaining ethics approval for that study, ob-
taining participant consent and safeguarding the data. This
extra data is not send to Blackbox, and no personal infor-
mation is stored on the Blackbox servers at any time.

5. INITIAL OUTCOMES
The Blackbox project went live on 11 June 2013. BlueJ

version 3.1.0 was released at that point, and the first time
each user loaded it, they were presented with a dialog asking
them to opt-in to the Blackbox project. Whether the user
opted-in or not, the dialog is never shown again unless they
explicitly invoke it via the program options.

5.1 Opt-in Rate and User Numbers
As mentioned previously, when BlueJ loads it “phones

home” to a central server. By dividing the total sessions
recorded in Blackbox by the number of phone-homes by
BlueJ 3.1.0, we can form an opt-in rate for a given time
period. After November 2013, the average daily opt-in rate
is 42% (min: 37%, max: 48%). Nearly six months after
launch we have a total of over 150,000 users participating
in the Blackbox project, with over 10,000,000 compilation
events. Based on current total BlueJ user numbers, version
adoption rates and opt-in rate, we expect that during 2014,
the number of users included in the data collection will be
over 500,000, with over 100 million compilation events.

5.2 Infrastructure
The Blackbox server and database are supported by two

machines running Ubuntu Linux. Each machine has two
hyper-threaded 6-core 2.5Ghz Xeon processors with 32GB of
RAM and four 2TB drives set up in RAID 5 configuration.
The first machine, named black, holds a write-only version of
the Blackbox database and collects all incoming data. This
database is live-mirrored to a second machine, named white,
where the database copy is read-only. Researchers only have
access to the white server, ensuring that analysis cannot cor-
rupt the original database. We are very grateful for support
by SIGCSE in the form of a SIGCSE Small Grant, which
supported part of the cost of these servers.

Error % of all errors
Unknown variable 16.7
Bracket expected 10.3
Unknown method 10.1
Semicolon expected 10.0
Illegal start of expression 5.0
Unknown class 4.6
Incompatible types 4.0
Method application error 3.5
Private access violation 3.5
Missing return 3.3

Table 1: Top ten most frequent compiler errors from
Jadud [6].

Error % of all errors
Unknown variable 17.7
Semicolon expected 9.5
Unknown method 7.6
Bracket expected 6.5
Unknown class 5.3
Incompatible types 4.5
Illegal start of expression 4.4
Method application error 3.7
Identifier expected 3.6
Not a statement 3.0

Table 2: Top ten most frequent compiler errors from
Blackbox, to 2013-12-01 (excl).

6. EXAMPLE ANALYSES
In this section, we will give some small examples of the

kinds of analysis that are possible with the Blackbox data.
All the results presented in this section are from the Black-
box data set up to 2013-12-01 (exclusive). The source code
for these analyses is openly available at: http://www.cs.

kent.ac.uk/~nccb/blackbox/.

6.1 Error Count Replication
One example of similar prior work is that of Jadud [6]. In

his thesis, Jadud gives a table of error frequencies; the top
ten are repeated here in table 1

We replicated this analysis, to compare the frequencies in
our own larger data set. One complication is that Jadud
used the Java compiler’s error message to classify the er-
rors. These errors are not guaranteed to be stable across
Java compiler versions, and thus we encountered several new
messages in our data (e.g. “reached end of file while pars-
ing”) that are partial reclassifications of previous errors (e.g.
“’}’ expected”). This problem notwithstanding2, our results,
given in table 2, were broadly similar to those of Jadud.

Jadud’s data had around 70,000 compiler errors to pro-
cess, collected over two years. Our Blackbox data set, col-
lected over nearly six months to 2013-12-01 (exclusive), has
over 5,000,000 compiler errors. More generally, the larger
sample sizes available in the Blackbox data will allow us
to replicate and verify findings from previous smaller-scale
studies.

2We hope to address this issue in our future work, by pro-
ducing stable classifications of errors that are independent
of compiler error messages.

System.out.println("Ingrese los numeros");
Scanner teclado = new Scanner(System.in);
int numero1 = teclado.nextInt();
int numero2 = teclado.nextInt();
if (numero1 > numero2) {

// ...
}
if (numero1 < numero2); {

// ...
}

Figure 1: An example of an empty if; note the semi-
colon on the final if.

6.2 Empty If Statements
When beginners learn Java, they must also learn the syn-

tax. In our personal experience of teaching and delivering
workshops, we have found that some beginners learn to put a
semicolon at the end of every line they write. However, this
can lead to a problem with constructs such as if-statements.
For example, a student might write:

if (x < 5);

{

x = 5;

}

The semicolon at the end of the first line is counted as
a single empty statement, which acts as the body of the if-
statement. This means that the first line has no effect, and
the body (assigning 5 to x) is executed regardless. This error
is particularly pernicious, because it is valid Java code and
does not cause a compile error, so the user gets no explicit
feedback about the problem. It also forms a useful test case,
because it can be easily detected through automatic analysis.

We believe it is safe to assume that an if-statement, with
no else clause, that has such an empty body is always a
mistake by the programmer. The if-statement is redundant
if there is no body and no else – and even if there is a side
effect (e.g. if (x++ < 5);) then the same effect could be
achieved with a normal statement (e.g. x++). We provide
a real example from the Blackbox data in figure 1.

Our experience of the error is personal and anecdotal. We
have two questions to investigate this error more rigorously:

1. How prevalent is this mistake?

2. How long does it take before the user fixes the mistake?

With the Blackbox data, the method is straightforward.
We scan all successful compilations for the first occurrence
of this mistake in a source file, then scan forwards in time,
to see how many further successful compilations the user
makes before this mistake is no longer present in the file.

Searching 1085598 different source files that had been suc-
cessfully compiled at least once (average: 6.0 times), we
found a total of 2647 source files containing these empty if
statements. In 1513 cases, these empty ifs were later re-
moved; the number of subsequent successful compilations
that were performed before the empty if was removed are
shown in figure 2. The results are clearly a power law, and
most are immediately fixed, although note that some empty
if statements were not fixed before more than 16 compila-
tions. In the case of the other 1134 empty ifs: they were not
fixed at all, and some were present for over 20 subsequent
successful compilations.

http://www.cs.kent.ac.uk/~nccb/blackbox/
http://www.cs.kent.ac.uk/~nccb/blackbox/

Figure 2: The number of successful compilations be-
fore an empty if was removed. For example, 584
empty ifs were removed during the next compilation
(i.e. after 1 further successful compilation). A fur-
ther 69 (not shown here) were removed after more
than 16 further successful compilations.

This analysis demonstrates a small example of the sorts of
scalable source code analysis that are possible on the Black-
box data set. More in-depth analyses could be performed
that look for certain idioms or patterns in students’ pro-
grams, or the use of certain programming constructs such
as inheritance or recursion.

6.3 Tracking User Behaviour
Many students using BlueJ also use the BlueJ ‘Objects

First’ textbook [3] for their course. The textbook is ac-
companied by a series of starting projects around which the
book’s exercises are based. By identifying this source code
verbatim in the data, we can observe what the Blackbox
users do with these projects. For example, the earliest code-
writing exercises in the book are reproduced in figure 3, and
the starting state of the source code is given in figure 4. We
found 1491 users who opened this project and observed their
next changes at subsequent successful compilations:

• 48 users changed line D (the wrong line) to use "blue" as
the parameter, with 1 encountering a compiler error. 24
of these then made the same change to line B (the correct
line).

• 503 users changed line B (the correct line) to use "blue"

as the parameter, with 9 encountering a compiler error.
Of these, 450 continued and:

– 23 changed "blue" back to "yellow", with 1 encoun-
tering a compiler error.

– 67 added "private Circle sun2;" after line A, with
13 encountering a compiler error.

• 28 users added "private Circle sun2;" after line A, with
6 encountering a compiler error.

• 72 users added "sun.slowMoveVertical(N);" after line
C, with 18 encountering a compiler error. 34 users chose
250 pixels as the parameter, and 16 users chose 300.

• Exercise 1.16 In the source code of class Picture, find the
part that actually draws the picture. Change it so that the sun
will be blue rather than yellow.

• Exercise 1.17 Add a second sun to the picture. To do this,
pay attention to the field definitions close to the top of the
class. You will find this code:

private Square wall;
private Square window;
private Triangle roof;
private Circle sun;

You need to add a line here for the second sun. For example:

private Circle sun2;

Then write the appropriate code for creating the second sun.

• Exercise 1.18 Challenge exercise... Add a sunset to the single-
sun version of Picture. That is: make the sun go down slowly.
Remember: The circle has a method slowMoveVertical that
you can use to do this.

Figure 3: The first code-writing exercises from the
BlueJ Objects First textbook, fifth edition [3]. The
identical exercises appeared in previous editions, la-
belled 1.13–1.15.

public class Picture
{

private Square wall;
private Square window;
private Triangle roof;
private Circle sun; // A

public void draw()
{

// ... initialise wall, window, roof

sun = new Circle();
sun.changeColor("yellow"); // B
sun.moveHorizontal(180);
sun.moveVertical(-(10));
sun.changeSize(60);
sun.makeVisible(); // C

}

public void setBlackAndWhite() { /* ... */ }

public void setColor()
{

if (wall != null)
wall.changeColor("red");

window.changeColor("black");
roof.changeColor("green");
sun.changeColor("yellow"); // D

}
}

Figure 4: A slightly condensed version of the origi-
nal source code of the Picture class from the BlueJ
Objects First textbook. Comments added to iden-
tify truncations and pertinent lines.

These changes were identified by transforming the source
code into a canonical form (an abstract syntax tree) to elim-
inate whitespace differences, and then combining identical
versions and ranking them by frequency. This analysis is
simple, but gives an idea of some of the chronological traces
that can be identified from the source code, and which may
be useful, for example, for designing intelligent tutors (or for
improving the flow of the BlueJ textbook!). Significant chal-
lenges remain in interpreting (and visualising) the results of
such an analysis.

7. CONCLUSIONS
Blackbox is a perpetual data collection project. Its nov-

elty lies in its size and in its availability to others. We gather
data from hundreds of thousands BlueJ users all around the
world into a single dataset, which other researchers can re-
quest access to. So far, researchers from eight other institu-
tions have expressed interest and been provided with access
to the data, and we welcome more3. Interested researchers
should contact the authors for more information.

There remain several potential technical challenges in con-
tinuing the project. We must ensure that the server can
withstand the load of recording all the data sent to it. We
may have to manage changes in the data schema in future,
should the need for changes arise. However, the project as it
stands is ready for other researchers to access the data and
start investigating their research questions.

Although researchers will each be investigating different
specific questions, they are likely to share some common
questions and requirements, both technical and research.
Technically, researchers may need similar tools – for exam-
ple, we have already created a tool that extracts all compi-
lation inputs from the database and stores them in an easily
accessible format. We intend to support the community of
Blackbox researchers by providing means of communication
(initially: a mailing list) and technical support. We hope
that, over time, various researchers will create and share
analysis and visualisation tools that ease the analysis of the
data and allow others to perform investigations more easily.
We also hope that joint discussions will serve to generate
ideas and generate a common understanding about the po-
tential and the limitations of the data.

There remain many technical challenges in the automated
analysis of source code. The scale of the data does not make
the analysis impossible, but it does prevent any manual in-
tervention; any analysis must typically be completely au-
tomatic. Many research questions will likely also involve
chronological analysis of source code, which adds further
complexity. Researchers will likely need to look to tools
such as source code query languages [10], and/or build new
models to analyse source code development over time.

Although the Blackbox project is one of the first educa-
tional research projects to operate at such a large scale, it
will surely not be the last. Sites such as MOOCs (Udacity,
Coursera, etc), Khan Academy, Codecademy, Scratch 2.0
are already operating at a large scale with some or all data
already stored server side (rather than having to be sent to a

3We restrict access to researchers employed at established
research institutions and with a record of interest in com-
puter science education, to prevent misuse of the data. If
the data were to become publicly accessible, Blackbox would
constitute the largest public repository of programming as-
signment solutions for students.

server specifically, as in BlueJ). For these projects, obtaining
the source code data and IDE interactions of users will be
even easier than the BlueJ project, and can operate at a sim-
ilar (or even larger) scale. The MOOC sites may also have
(and be willing to use) demographic information about their
participants. Analysis techniques for source code are likely
to be broadly applicable across several of these code bases,
but analysis of IDE interactions may be less portable. It is
also important to recognise that although large-scale data
is useful for investigating some research questions, it is not
a panacea. In some cases it is inappropriate and in other
cases it will form a useful complement to other techniques,
not replace them.

8. REFERENCES
[1] MSR ’11: Proceedings of the 8th Working Conference

on Mining Software Repositories. ACM, 2011.

[2] M. Ahmadzadeh, D. Elliman, and C. Higgins. An
analysis of patterns of debugging among novice
computer science students. In ITiCSE ’05, pages
84–88. ACM, 2005.

[3] D. J. Barnes and M. Kölling. Objects First with Java:
A Practical Introduction using BlueJ. Prentice Hall /
Pearson Education, fifth edition, 2012.

[4] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones,
A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In ICER ’09, pages 3–14. ACM, 2009.

[5] J. B. Fenwick, Jr., C. Norris, F. E. Barry, J. Rountree,
C. J. Spicer, and S. D. Cheek. Another look at the
behaviors of novice programmers. In SIGCSE ’09,
pages 296–300. ACM, 2009.

[6] M. C. Jadud. An Exploration of Novice Compilation
Behaviour in BlueJ. PhD thesis, Computing
Laboratory, University of Kent, January 2007.

[7] M. Kölling and I. Utting. Building an open, large-scale
research data repository of initial programming
student behaviour. In SIGCSE ’12, pages 323–324.
ACM, 2012.

[8] J. C. Spohrer, E. Soloway, and E. Pope. A goal/plan
analysis of buggy pascal programs. Hum.-Comput.
Interact., 1(2):163–207, June 1985.

[9] R. Thomas, G. E. Kennedy, S. Draper, R. Mancy,
M. Crease, H. Evans, and P. Gray. Generic usage
monitoring of programming students. In ASCILITE
’03, 2003.

[10] R.-G. Urma and A. Mycroft. Programming language
evolution via source code query languages. In
PLATEAU ’12, pages 35–38. ACM, 2012.

[11] I. Utting, N. C. C. Brown, M. Kölling, D. McCall, and
P. Stevens. Web-scale data gathering with BlueJ. In
ICER ’12, pages 1–4. ACM, 2012.

	Introduction
	BlueJ
	Prior Work
	Research Issues
	Identifiable Data
	Anonymisation
	Data Design
	Data collected
	Data Caveats
	Local studies and demographics

	Initial Outcomes
	Opt-in Rate and User Numbers
	Infrastructure

	Example Analyses
	Error Count Replication
	Empty If Statements
	Tracking User Behaviour

	Conclusions
	References

