
Alloy tutorial

Neil C. C. Brown

June 8, 2009

Introduction

This document is a tutorial for the Alloy generics library. Alloy is similar to
other generics libraries, such as Scrap Your Boilerplate (SYB), Uniplate, EMGM
and all the rest. Alloy tends to be quite fast (see our paper for benchmarks)
because it avoids traversing parts of the data structure that it does not need to.

This is accomplished by generating type-class instances based on the can-
contain relation between types. The current set of operations (opset) is trimmed
dynamically to remove types that can no longer be contained in the data item
being traversed. For more details, see the draft paper.

1

1 Paradise Benchmark

Below are some sample data types, originally created by Ralf Lämmel as part of
the paradise benchmark. They are taken directly from http://www.cs.vu.nl/
boilerplate/testsuite/paradise/CompanyDatatypes.hs. We will use them
for our first few examples of using Alloy.� �
{−# LANGUAGE DeriveDataTypeable #−}
module CompanyDatatypes where

import Data.Generics hiding (Unit)

−− The organisational structure of a company

data Company = C [Dept] deriving (Eq, Ord, Show, Typeable, Data)
data Dept = D Name Manager [Unit] deriving (Eq, Ord, Show, Typeable, Data)
data Unit = PU Employee | DU Dept deriving (Eq, Ord, Show, Typeable, Data)
data Employee = E Person Salary deriving (Eq, Ord, Show, Typeable, Data)
data Person = P Name Address deriving (Eq, Ord, Show, Typeable, Data)
data Salary = S Float deriving (Eq, Ord, Show, Typeable, Data)
type Manager = Employee
type Name = String
type Address = String

−− An illustrative company
genCom :: Company
genCom = C [D "Research" laemmel [PU joost, PU marlow],

D "Strategy" blair []]

−− A typo for the sake of testing equality ;
−− (cf. lammel vs. laemmel)
genCom’ :: Company
genCom’ = C [D "Research" lammel [PU joost, PU marlow],

D "Strategy" blair []]

lammel, laemmel, joost , blair :: Employee
lammel = E (P "Lammel" "Amsterdam") (S 8000)
laemmel = E (P "Laemmel" "Amsterdam") (S 8000)
joost = E (P "Joost" "Amsterdam") (S 1000)
marlow = E (P "Marlow" "Cambridge") (S 2000)
blair = E (P "Blair" "London") (S 100000)

−− Some more test data
person1 = P "Lazy" "Home"

dept1 = D "Useless" (E person1 undefined) []� �

2

http://www.cs.vu.nl/boilerplate/testsuite/paradise/CompanyDatatypes.hs
http://www.cs.vu.nl/boilerplate/testsuite/paradise/CompanyDatatypes.hs

1.1 The Basics

To generate instances, you must write a short Haskell program that uses the
Data.Generics.Alloy.GenInstances module. Here is the example for the CompanyDatatypes

module:� �
import CompanyDatatypes
import Data.Generics.Alloy.GenInstances

main :: IO ()
main = writeInstancesTo (allInstances GenWithoutOverlapped)

[genInstance (undefined :: Company)]
(["module Instances where"

,"import qualified CompanyDatatypes"

] ++ instanceImports)
"Instances.hs"� �

The configuration options (the allInstances call) can be ignored for now,
but we will return to them later. This program will generate a file named
“Instances.hs” which is a complete module with instances for all the data
types that can possibly be contained in the Company data type. Note that the
Company datatype, and anything it contains, must have a Data instance. This
can be done automatically in GHC by simply adding Typeable and Data to the
deriving clause for your data types.

You supply the header for the module yourself. The three requirements
for Alloy are that you must import the Data.Generics.Alloy module, and (as
a qualified import) the module(s) that contain the types you are generating
instances for. If you generate all instances as we are, you must also import the
Control.Applicative and Control.Monad modules (which we will return to later).
Having generated the instances, we can now write the paradise benchmark, that
modifies all the salaries in the company. Since we are operating on all instances
of a particular data-type, we can use the helper function applyBottomUp (akin
to everywhere in SYB):� �
import CompanyDatatypes
import Data.Generics.Alloy
import Instances

increase :: Float -> Company -> Company
increase k = applyBottomUp (incS k)

incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

main = print $ increase 0.1 genCom� �
This is the most basic use of Alloy. There is also an applyBottomUp2 function

that takes two functions operating on distinct types, and applies both of them
throughout the data structure.

3

1.2 Multiple Target Types and Controlled Descent

The previous example applied the salary increase to all employees in the com-
pany. Often, traversals need to be more selective, based on nodes further up (i.e.
closer to the root) in the tree. We will now consider how to increase the salary
of all employees except those that are anywhere in the research department. We
must bear in mind that departments may contain departments:� �
{−# LANGUAGE TypeOperators #−}
import CompanyDatatypes
import Data.Generics.Alloy
import Instances

increaseAllButResearch :: Float -> Company -> Company
increaseAllButResearch k = makeRecurse ops

where
ops :: Dept :− Salary :− BaseOp
ops = doDept :− incS k :− baseOp

doDept :: Dept -> Dept
doDept d@(D name)
| name == "Research" = d
| otherwise = makeDescend ops d

incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

main = print $ increaseAllButResearch 0.1 genCom� �
There are several new concepts here. The main concept is the opset (short

for operations set). An opset is built using the :− constructor in a cons-fashion,
terminated by the baseOp function (of BaseOp type). The type of an opset
mirrors its construction, showing that it is an opset on the two types Dept and
Salary. Usually the type of an opset can be inferred and thus it is a matter of
style whether to include the type.

An opset is used primarily with two functions: makeRecurse and makeDescend.
Broadly, makeRecurse is used to begin a traversal, and makeDescend is used to con-
tinue it; makeRecurse applies the operations to all the largest types (the first ones
encountered in a depth-first search) it can find, potentially including the argu-
ment you have given it – in contrast, makeDescend begins with the type’s children.
The increaseAllButResearch function uses makeRecurse to begin the traversal of the
company. However, doDept must use makeDescend in order to operate on the chil-
dren of the Dept. If doDept had used makeRecurse, an infinite loop would have
resulted from doDept continually being applied to the same department.

The function works by examining the department name. If the name is
"Research", the department is returned unaltered (as we do not wish to alter
any employees’ salaries in research, even in sub-departments). Otherwise, the
traversal continues across the department, looking for further sub-departments,
and also salaries to increase as before.

4

1.3 Type-Class Constraints

So far, we have always used Alloy on known, definite types. When you do this, no
type-class constraints are required as the compiler can go and find the type-class
instances for the definite types. If you want to operate on parameterised types,
you will need to manually add some type-class constraints. In essence, you will
need to copy the type-class constraints from any Alloy function you make use
of, such as makeDescend, applyBottomUp, etc, that involves the parameterised
type. You can see all the constraints in the documentation. We will re-use our
previous example to demonstrate:� �
{−# LANGUAGE TypeOperators #−}
import CompanyDatatypes
import Data.Generics.Alloy
import Instances

increaseAllButResearch :: Alloy a (Dept :− Salary :− BaseOp) BaseOp =>

Float -> a -> a
increaseAllButResearch k = makeRecurse ops

where
ops :: Dept :− Salary :− BaseOp
ops = doDept :− incS k :− baseOp

doDept :: Dept -> Dept
doDept d@(D name)
| name == "Research" = d
| otherwise = makeDescend ops d

incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

main = print $ increaseAllButResearch 0.1 genCom� �
The extra constraint included is taken from makeRecurse. The first parameter

of the Alloy type-class is the type that the operation (makeRecurse) is applied to.
For makeRecurse the second operation set is full and the third is empty; for
makeDescend the reverse would be true. We only need include the constraint for
makeRecurse, and not makeDescend because the former operates on a whereas the
latter here acts on a definite type, with a definite opset.

5

1.4 Effects

So far we have seen Alloy operating with pure functions. Often, traversals
need to have effects. Alloy supports effects with applicative functors, and as a
helpful common case of applicative functors: monads. Consider the case where
we want to increase salaries in the company, until we run out of budget. For
our example, which salaries are increased will be fairly arbitrary (the order of
the tree traversal), but such is life! We will maintain a remaining budget total
in a state monad as we traverse.

To use effectful transformations, we must use the AlloyA type-class instead
of Alloy. All of the helper functions we have seen so far are available, with an A

suffix (for Applicative) and an M suffix (for Monad).
Here is the code for increasing the salaries up to a given budget:� �

import CompanyDatatypes
import Data.Generics.Alloy
import Instances
import Control.Monad.State

increase :: Float -> Company -> Company
increase k c = evalState (applyBottomUpM (incS k) c) 1000

incS :: Float -> Salary -> State Float Salary
incS k (S s)
= do budget <- get

if diff > budget
then return (S s)
else do put $ budget − diff

return (S s ’)
where

s ’ = s ∗ (1+k)
diff = s ’ − s

main = print $ increase 0.1 genCom� �

6

We can now put together two of our previous examples, to selectively increase
the salary of all those not in the research department, up to a given budget:� �
{−# LANGUAGE TypeOperators #−}
import CompanyDatatypes
import Data.Generics.Alloy
import Instances
import Control.Monad.State

increaseAllButResearch :: Float -> Company -> Company
increaseAllButResearch k c = evalState (makeRecurseM ops c) 15000

where
ops :: (Dept :−∗ Salary :−∗ BaseOpA) (State Float)
ops = doDept :−∗ incS k :−∗ baseOpA

doDept :: Dept -> State Float Dept
doDept d@(D name)
| name == "Research" = return d
| otherwise = makeDescendM ops d

incS :: Float -> Salary -> State Float Salary
incS k (S s)
= do budget <- get

if diff > budget
then return (S s)
else do put $ budget − diff

return (S s ’)
where

s ’ = s ∗ (1+k)
diff = s ’ − s

main = print $ increaseAllButResearch 0.1 genCom� �
The changes in the increaseAllButResearch function are that the :− constructor

has become :−∗ in the effectful version, and similarly baseOp has become baseOpA.
The terminator is oblivious to whether the effect in question is an applicative
functor or a monad, hence there is only the A-suffixed version. The opset is
then parameterised by the monad in question (the bracketing in the type of ops

is important).
Apart from these small textual changes, it can be seen that the code is

roughly the same.

7

1.5 Queries

A better example of increasing salaries with a limited budget might be to set a
fixed proportional raise, based on the total salaries across the company. An easy
way to accomplish this is to first run a query on the company to find the salaries,
and secondly to traverse the tree performing the increases on the salaries:� �
import CompanyDatatypes
import Data.Generics.Alloy
import Instances

increase :: Float -> Company -> Company
increase k = applyBottomUp (incS k)

incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

totalSalary :: Company -> Float
totalSalary = sum . map (\(S s) -> s) . listifyDepth (const True)

main = print $ increase (5000 / totalSalary genCom) genCom� �
This code uses the listifyDepth function, which is akin to SYB’s listify .

Given a function of type s -> Bool, listifyDepth returns a list of all items of type
s that result in True. Here, all salaries are needed so const True is the suitable
definition. listifyDepth is implemented using a traversal with the State monad,
and this method can be used to implement other similary query operations.

8

1.6 Routes

As another example we will consider how to find the employee(s) with the lowest
salary in the company and increase just their salary. This could be done with a
two-pass query, first finding the lowest salary, and second traversing the entire
tree to increment all employees with a matching salary. We instead use this
example to demonstrate routes, an experimental zipper-like feature.� �
import CompanyDatatypes
import Data.Generics.Alloy
import Instances
import Control.Monad.State

increase :: Float -> Route Salary Company -> Company -> Company
increase k r = routeModify r (incS k)

incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

findMin :: Company -> [Route Salary Company]
findMin c = snd $ execState (applyBottomUpMRoute minSalary c) (Nothing, [])

where
minSalary :: (Salary , Route Salary Company)

-> State (Maybe Float, [Route Salary Company]) Salary
minSalary (S s , r)
= do (curMin, rs) <- get

case fmap (compare s) curMin of
Nothing -> put (Just s , [r])
Just LT -> put (Just s , [r])
Just EQ -> put (curMin, r : rs)
Just GT -> return ()

return (S s)

main = print $ foldr (increase 0.1) genCom (findMin genCom)� �
The route is a path into a tree of type Company, to an item of type Salary.

This route can be used for getting, setting or modifying, when applied to the
same tree that it was derived from. This means that the whole tree does not
need to be traversed again to alter a couple of salaries, which can be a useful
saving with large trees.

This strategy is vaguely similar to zippers, but uses mutation rather than
any more complex manipulations. Multiple routes can be used to modify the
same tree, as long as the final nodes are disjoint (i.e. one does not contain
another).

9

1.7 Maps and Sets

Alloy builds its type-classes using the Data instance for the types given to it. If
you derive Data and Typeable using the built-in GHC feature, this will work fine.
One problem is that the popular container types, Map and Set do not derive
Data in this way and by default Alloy will fail to work with them properly.

As a workaround, Alloy includes two special functions, genMapInstance and
genSetInstance. These functions provide a view on maps as a collection of key-
value pairs, and also allow processing of elements in sets. We will demonstrate
this with a simple example, first some new data types:� �
module MapSet where

import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Generics
import CompanyDatatypes

type Payroll = Map.Map Person Salary

type Managers = Set.Set Manager

data CompanyInfo = CompanyInfo Payroll Managers
deriving (Typeable, Data, Show)� �
We will then need to generate some instances:� �

import CompanyDatatypes
import MapSet
import Data.Generics.Alloy.GenInstances

main :: IO ()
main = writeInstancesTo (allInstances GenWithoutOverlapped)

[genInstance (undefined :: Company)
,genInstance (undefined :: CompanyInfo)
,genMapInstance (undefined :: Person) (undefined :: Salary)
,genSetInstance (undefined :: Manager)]
(["module MapSetInstances where"

,"import qualified CompanyDatatypes"

,"import qualified MapSet"

] ++ instanceImportsMapSet)
"MapSetInstances.hs"� �

This is similar to our previous code for generating instances. We call genInstance

for Company and CompanyInfo (neither contains the other, but between them they
both contain all the data types). We call genMapInstance for our map, passing the
key and value types as parameters, and similarly we call genSetInstance. Finally,
we use instanceImportsMapSet instead of instanceImports . We can now use these
instances to perform some operations on the data types. First, we will define
some operations to derive the CompanyInfo information, using a state monad:

10

� �
import CompanyDatatypes
import MapSet
import MapSetInstances
import Data.Generics.Alloy
import qualified Data.Map as Map
import qualified Data.Set as Set
import Control.Monad.State

companyInfo :: Company -> CompanyInfo
companyInfo c = execState (applyBottomUpM2 doEmployee doDept c)

(CompanyInfo Map.empty Set.empty)
where

doEmployee :: Employee -> State CompanyInfo Employee
doEmployee (E p s)
= do modify $ \(CompanyInfo es ms) ->

CompanyInfo (Map.insert p s es) ms
return (E p s)

doDept :: Dept -> State CompanyInfo Dept
doDept d@(D m)
= do modify $ \(CompanyInfo es ms) ->

CompanyInfo es (Set. insert m ms)
return d� �

We can then perform further operations on the CompanyInfo type. For ex-
ample, we can increase the salary of all employees with the letter ‘o’ in their
name:� �
incS :: Float -> Salary -> Salary
incS k (S s) = S (s ∗ (1+k))

increaseOs :: Float -> CompanyInfo -> CompanyInfo
increaseOs k = applyBottomUp inc

where
inc :: (Person, Salary) -> (Person, Salary)
inc (P n a, s)
| ’o’ ‘elem‘ n = (P n a, incS k s)
| otherwise = (P n a, s)

main = print $ increaseOs 0.1 $ companyInfo genCom� �
Notice how we define the function to work on key-value pairs in order to

process the map entries. If you wish to process the map itself differently, you can
define an operation on the map; the map instances we use here are particularly
useful for descending into maps (for example if the value in a map can contain
types you wish to process).

11

	Paradise Benchmark
	The Basics
	Multiple Target Types and Controlled Descent
	Type-Class Constraints
	Effects
	Queries
	Routes
	Maps and Sets

